
AD-A264 6529
iuiti ~~i~~iHEMISS ION CR IT ICA..

COMPUTER RESOURCES.,,
MANAGMENTMAY 2 11993

GUIDE
SOFTAREFIRMAREHARDWARE

PAPER WARE
El kll~

MISSION CRITICAL
COMPUTER RESOURCES

MANAGEMENT
GUIDE

DEFENSE SYSTEMS MANAGEMENT COLLEGE
FT. BELVOIR, VA 22060-5426

For sale by the U.S. Government Printing Office
Superinter lent of Documents. Mail Stop: SSOP, Washington. M. 2040211328

Preface

PREFACE

This document is one of a family of education- Test and Evaluation Management Guide,
al guides written from a Department of March 1988
Defense (DOD) Perspective (i.e., non-ser-
vice peculiar). These books are intended Acquisition Strategy Guide, First Edition, July
primarily for use in the courses at the Defense 1984
Systems Management College (DSMC) and
secondarily as a desk reference for program Subcontracting Management Handbook, First
and project management personnel. The Edition, 1988
books arc written for current and potential
DOD Acquisition Managers who have some A Program Office Guide to Technology Trans-
familiarity with the basic terms and defini- fer, November 1988
tions of the acquisition process. It is intended
to assist both the Government and industry This guidebook was developed by the follow-
personnel in executing their management ing members of the DSMC Technical
responsibilities relative to the acquisition and Management Department staff:
support of defense systems. This family of
technical guidebooks includes: Lt Col Israel I. Caro, USAF

Lt Col Ronald P. Higuera, USAF (Retired)
Integrated Logistics Support Guide; First Edi- Cdr Frank R. Kockler, USN (Retired)
tion: May 1986 Mr. Sherwin J. Jacobson

Mr. Alan Roberts
Systems Engineering Management Guide;
Second Edition: Dec 1986 In addition, Capt Leigh H. French, USAF, 01

and Ms. Mary E. (Lyn) Dellinger, also from [
Department of Defense Manufacturing the Technical Management Department,
Management Handbook for Program provided valuable additions and comments to
Managers; Second Edition: July 1984 this edition.

RELEASE TO DTIC & NTIS USERS IN PAPER I Spooal

COPY AND MICROFICHE, AUTH: DSMC PRESS DTIC QUALfI' yuS:.•CTED ' 4,
(MR BALL 703-805-28122) PER TELECON,
21 MAY 93- CB

Table of Contents

TABLE OF CONTENTS

PREFACE i 3.3.3 Firmware 3-5
3.3.4 Peopleware 3-6

CHAPTER 1 3.3.5 Documentation 3-6
INTRODUCTION 3.3.6 Development/Support Facilities 3-7

3.4 COMPUTER ARCHITECTURE 3-.7
INTRODUCTION 1-1 3.4.1 Bits and Bytes 3-8
REFERENCES 1-2 3.4.2 Instruction Set Architecture 3-8

3.5 SOFTWARE LANGUAGES 3-9
CHAPTER 2 3.5.1 Machine Language 3-10

INTRODUCTION TO COMPUTER RESOURCES 3.5.2 Assembly Language 3-10
3.5.3 High Order Language 3-11

2.1 HISTORICAL PERSPECTIVE 2-1 3.5.4 Application Generators (4GL) 3-12
2.2 SOFTWARE IMPACT ON SYSTEM 2-2 3.6 ADA 3-13
2.3 LIFE CYCLE COST TRENDS 2-3 3.6.1 Ada Design 3-13
2.4 EVOLUTION OF DIGITAL SYSTEMS 2-4 3.6.2 Ada Compilers 3-14
2.5 WEAPON SYSTEM SOFTWARE 2-6 3.6.3 Ada Language Features 3-15
2.6 CURRENT STATE OF AFFAIRS 2-6 3.6.4 Ada Environment 3-16
2.7 HISTORICAL CONTRIBUTORS 2-7 3.6.4.1 KAPSE 3-16
2.8 MANAGEMENT GUIDANCE 2-8 3.6.4.2 APSE 3-16
2.9 REFERENCES 2-9 3.6.4.3 Ada Program Design Language 3-17

3.7 Ada SURVIVAL 3-17
CHAP'-- 3 3.8 REFERENCES 3-18

TECHNICALFI NDATIONS
CHAPTER 4

3.1 INTRODUCTION 3-1 SOFPTWARE ACQUISITION POLICY
3.2 INSIDE THE COMPUTER 3-1
3.2.1 Input/Output Section 3-2 4.1 INTRODUCTION 4-1
3.2.2 Central Processing Unit 3-2 4.2 BROOKS BILL 4-1
3.2.3 Memory Unit 3-3 4.3 DOD DIRECTIVE 5000.29 4-2
3.2.4 Computer Hardware 3-3 4.4 WARNER-NUNN AMENDMENT 4-3
3.3 COMPUTER RESOURCES 3-4 4.5 MCCR STANDARDIZATION 4-3

.3.1 Embedded Computer Hardware 3-5 4.6 DOD DIRECTIVE 3405.2 4-4
3..,.2 Software 3-5 4.7 DOD DIRECTIVE 3405.1 4-5

ii

Table of Contents

4.8 Ada PROGRAMMING LANGUAGE 4-5 6.4.2.2 White Box or Structural Testing 6-9
4.9 SOFTWARE ENGINEERING AND 6.4.2.3 Top-Down/Bottom-Up Testing 6-10

TECHNOLOGY 4-6 6.4.2.4 Software System Testing 6-11
4.10 SOFTWARE SUPPORT 4-7 6.4.3 Integration Testing 6-12
4.11 TOP LEVEL SERVICE DIRECTIVES 6.4.3.1 Hot Bench Testing 6-12

AND GUIDELINES 4-7 6.4.3.2 DT&E/OT&E Testing 6-13
4.12 3OFTWARE DATA RIGHTS 4-8 6.5 TEST TOOLS 6-13
4.13 AUTOMATED INFORMATION 6.6 DEBUGGING 6-14

SYSTEMS 4-9 6.7 MANAGEMENT GUIDANCE 6-15
4.14 SUMMARY 4-9 6.8 REFERENCES 6-16
4.15 REFERENCES 4-10

CHAPTER 7
CHAPTER 5 POST DEPLOYMENT SOFTWARE SUPPORT

SOFTWARE DEVELOPMENT PROCESS
7.1 BACKGROUND 7-1

5.1 INTRODUCTION 5-1 7.2 PROBLEM AREAS 7-1
5.2 SUMMARY OF DEVELOPMENT 7.3 MANAGEMENT PERCEPTIONS 7-3

ACTIVITIES 5-2 7.4 MANAGEMENT CONCERNS 7-4
5.3 SYSTEM REQUIREMENTS ANALYSIS 7.5 WHAT IS PDSS? 7-5

AND DESIGN 5-3 7.6 SOFTWARE LIFE CYCLE
5.3.1 System Design 5-4 CONSIDERATIONS 7-6
5.4 SOFTWARE DEVELOPMENT 5-5 7.7 IMPROVING THE PDSS PROCESS 7-7
5.4.1 Software Requirements Analysis 5-6 7.8 MANAGEMENT GUIDANCE. 7-11
5.4.2 Preliminary Design 5-7 7.8 REFERENCES 7-11
5.4.3 Detailed Design 5-8
5.4.4 Coding and CSU Testing 5-9 CHAPTER 8
5.4.5 CSC Integration and Testing 5-10 PLANNING FOR COMPUTER SOFTWARE
5.4.6 CSCI Testing 5-10
5.5 SYSTEM INTEGRATION &TESTING 5-12 8.1 INTRODUCTION 8-1
5.6 TAILORING 5-12 8.2 PLANS AND DOCUMENTATION 8-1
5.7 SUMMARY 5-14 8.2.1 Program Management Plan (PMP) 8-1
5.8 REFERENCES 5-15 8.2.2 Test and Evaluation Master Plan (TEMP) 8-2

8.2.3 Integrated Logistics Support Plan (IL.SP) 8-2

CHAPTER 6 8.2.4 Computer Resources Life Cycle
SOFTWARE TEST AND EVALUATION Magemcnt Plan (CRLCMP) 8-3

8.3 ENGINEERING STUDIES 8-3
6.1 TEST PLANNING 6-1 8.4 COMPUTER RESOURCES WORKING
6.1.1 System Support Computer Resources 6-1 GROUP (CRWG) 8-4
6.1.2 Mission Critical Computer Resources 6-2 8.5 SYSTEM SECURITY 8-6
6.2 COST OF SOFTWARE FIXES 6-5 8.6 CONTRACTUAL CONSIDERATIONS 8-6
6.3 SOURCES OF SOFTWARE ERRORS 6-6 8.6.1 Source Selection Plan (SSP) 8-6
6.4 TYPES OF TESTING 6-6 8.6.2 Request for Proposal Package (RFP) 8-7
6.4.1 Human Testing 6-6 8.6.2.1 Requiremeits Spccification(s) 8-7
6.4.1.1 lIspections 6-6 8.6.2.2 Instructions to Offerors 8-7
6.4.1.2 Walk-throughs 6-7 8.6.2.3 Proposal Evaluation Criteria 8-8
6.4.1.3 Desk Checking 6-7 8.6.2.4 Statement of Work (SOW) 8-8
6.4.1.4 Peer Ratings 6-7 8.6.2.5 Work Breakdown Structure 8-8
6.4.1.5 Design Reviews 6-7 8.6.2.6 Deliverable Items 8-8
6.4.1.6 Benefits of Human Testing 6-8 8.6.2.7 Special Contract Requirements 8-9
6.4.2 Software Only Testing 6-8 8.6.3 Source Selection Process 8-9

6.4.2.1 Black Box or Functional Testing 6-8 8.6.3.1 Draft RFP 8-9

iii

Table of Contents

8.6.3.2 Populating the Source Selection 11.5.2 Establishing the Scope of IV&V 11-4
Organization 8-10 11.5.3 Defining the IV&V Tasks 11-4

8.6.3.3 Evaluation Process 8-11 11.5.4 Estimating Software IV&V Costs 11-6
8.6.3.4 Evaluating Offeror's Proposal 8-12 11.5.5 Selecting IV&V Agent 11-7
8.6.3.5 Software Development Capability 11.6 REFERENCES 11-7

Capacity Review 8-12
8.6.3.6 Software Capability Evaluation 8-14 CHAPTER 12
8.7 REFERENCES 8-16 METRICS

CHAPTER 9 12.1 INTRODUCTION 12-1
MANAGEMENT PRINCIPLES 12.2 TYPES OF METRICS 12-1

12.2.1 Management Metrics 12-1
9.1 INTRODUCTION 9-1 12.2.2 Quality Metrics 12-2
9.2 SOFTWARE ENGINEERING 9-2 12.2.3 Process Metrics 12-2
9.3 GUIDELINES AND RULES 9-3 12.3 METRICS APPLICATION 12-2
9.4 PROCESS CONTROL 9-5 12.3.1 Pre-Solicitation 12-3
9.5 REQUIREMENTS AND PROTOTYPING 9-8 12.3.2 Government Model 12-3
9.5.1 Specification Development Tools 9-8 12.3.3 Resource Needs 12-3
9.5.2 Rapid Prototyping 9-9 12.3.4 RFP and SOW 12-4
9.5.3 Incremental and Evolutionary Development9-10 12.3.5 Choice of Measures 12-5
9.6 SUMMARY 9-11 12.3.6 Use of Models and Norms 12-5
9.7 REFERENCES 9-11 12.3.7 Process Maturity 12-5

12.3.8 Negotiation 12-5
CHAPTER 10 12.3.9 Contract Monitoring 12-6

SOFTWARE CONFIGURATION MANAGEMENT 12.3.10 Adjustments and Refinements 12-6
12.4 PROGRAM MANAGER'S METRICS 12-6

10.1 INTRODUCTION 10-1 12.4.1 Software Size and Cost Status 12-7
10.2 CONFIGURATION IDENTIFICATION 10-2 12.4.2 Manpower Application Status 12-8
10.3 CONFIGURATION CONTROL 10-3 12.4.3 Cost and Schedule Status 12-8
10.3.1 Interface Control 10-5 12.4.4 Resource Margins 12-9
10.3.2 Baseline Management 10-6 12.4.5 Quantitative Software Specification Status 12-10
10.3.3 Configuration Control Board 10-7 12.4.6 Design/Development Status 12-10
10.3.4 Software Configuration Review Board 10-7 12.4.7 Defects/Faults/Errors/Fixes 12-11
10.3.5 Configuration Control Process 10-9 12.4.8 Test Program Status 12-12
10.4 CONFIGURATION STATUS 12.4.9 Software Problem Reports Status 12-12

ACCOUNTING 10-10 12.4.10 Delivery Status 12-13
10.4.1 Software Development Library 10-10 12.5 SUMMARY 12-13
10.4.2 Software Development Folder 10-11 12.6 REFERENCES 12-13
10.5 CONFIGURATION AUDITS 10-11
10.7 SUMMARY 10-12 CHAPTER 13
10.8 REFERENCES 10-12 EPILOGUE

CHAPTER 11 13.1 INTRODUCTION 13-1
INDEPENDENT VERIFICATION & VALIDATION 13.2 SOFTWARE COST UNCERTAINTIES 13-3

13.3 SOFTWARE ACQUISITION CYCLE 13-4
11.1 BACKGROUND 11-1 13.4 PROTOTYPES 13-5
11.2 VERIFICATION 11-2 13.5 SCHEDULES AND MANNING 13-6
11.3 VALIDATION 11-3 13.6 TEAM SIZE AND MANAGEMENT 13-7
11.4 CERTIFICATION 11-3 13.7 ASSESSING PERFORMANCE 13-8
11.5 THE IV&V PROCESS 11-3 13.8 MANAGEMENT GUIDANCE 13-1)
11.5.1 Determining the Need for IV&V 11-3 13.9 REFERENCES 13-10

iv

Table of Contents

APPENDICES

LIST OF ACRONYMS A-1 SOURCE SELECTION PLAN G-1
GLOSSARY OF TERMS B-1 SOFTWARE DIDs H-1
PMP OUTLINE C-1 APPLICABLE SOFTWARE MANAGEMENT
TEMP OUTLINE D-1 REFERENCES I-1
ILSP OUTLINE E-1 INDEX J-1
CRLCMP OUTLINE F-1

V

Chapter 1 Introduction

CHAPTR 1

INTRODUCTION

Mission Critical Computer Resources ces. Money can't fix the problem -- only time
(MCCR) refers to the totality of computer can [1]. Once a program falls behind, little
hardware and computer software that is in- can be done to save it!
tegral to a weapon system along with the as-
sociated personnel, documentation, supplies Management of MCCR development cannot
and services. A natural question to ask is "Why be ignored or delegated. If the program
should a program manager be that interested manager leaves all MCCR management con-
in MCCR." The answer is fourfold. First, siderations to the development contractor,
software for weapon systems is on tihe "critical there is the strong possibility that the software
path" of system development. If software development will encounter significant dif-
development falls behind schedule, the entire ficulties. The management of MCCR
weapon system development will also fall be- development may be compared with piloting
hind schedule. Second, software can produce an aircraft. Without the proper application of
development problems of sufficient mag- the necessary control, it is extremely unlikely
nitude to result in costly program overruns. It that the aircraft will safely reach the intended
is not uncommon for software development destination. Without the appropriate
costs to exceed initial budget estimates by as management directives, it is unlikely that
much as 50% to 100%. Third, the perfor- MCCR development will result in a suitable
mance of modern weapon systems is largely product. There are no autopilots for MCCR
dependent on the quality of their computer development. Effective MCCR acquisition
resources; the system is only as good as its management, like piloting, is a difficult task
software. Fourth, it is an established fact that, but, with proper knowledge and care, riot im-
if the software development falls behino possible [2]. This guide will only cover the
schedule, the development lead times cannot basics by providing enough background to
be shortened simply by applying more resour- enable straight and level flight. Aerobatics

1-1

Chapter 1 Introduction

(i.e., unconventional developments) depend tractor by the procuring agency's program
on greater mastery of the fundamentals, management organization [2].
which is outside the scope of this guidebook.

REFERENCES
The actual MCCR development will be ac-
complished by a system development contrac- 1. Meinke, George H., Airborne Software Ac-
tor. On occasion, the "contractor" may be quisition Management.. .A Guide for New
another DOD agency. The development con- Software Managers, Air Command and Staff
tractor has the responsibility of delivering a College Report Number 82-1685, Air Univer-
software product that meets all contractual sity, Maxwell AFB, Al 36112.
requirements. Unfortunately, it is not pos-
sible to specify precisely and completely in a 2. Rubey, Raymond J.,A Guideto theManage-
contract all the characteristics of the final ment of Software in Weapon Systems, Prepared
software product and its development by Softech for the U.S. Air Force Aeronauti-
process. Experience has shown that the dif- cal Systems Division and the U.S. Army Avia-
ference between successful and unsuccess- tion Systems Command, 2nd Edition, March
ful development efforts is often the rigor and 1985.
timeliness of the direction given to the con-

1-2

Chapter 2 Introduction to Computer Resources

CHAPTER 2

INTRODUCTION TO COMPUTER
RESOURCES

2.1 HISTORICAL PERSPECTIVE circuit design, for example, an electrical
engineer can use off-the-shelf components

The development of computer software as a and modules with the necessary charac-
recognized activity is less than 40 years oid. teristics to build large portions of a system.
During the infancy of digital computers Off-the-shelf components or modules are not
(1950s) all software or computer programs widely available to the software engineer.
were dev 'oped by engineers or scientists as Quite often attempts to use existing software
an adjunct to their work with computers. In lead to major problems if the designers are
the early 1960s, computer technology was not careful when integrating the existing
usually taught under the auspices of university software into their design. Designers must
or college electrical engineering depart- fully understand all of the characteristics of
ments. It wasn't until the late 1960s that corn- existing software as well as its overall perfor-
puter science departments were being mance and reliability. Software engineering
established as separate entities. The term is still in its infancy. New innovations are
"software engineering" was not coined until being introduced every day, but they are more
1968 when the term was used as a theme of evolutionary in nature than revolutionary.
several workshops held in West Germany and Many of the problems associated with
Italy to address the growing problems as- software engineering are due to the relative
sociated with software development [1]. So immaturity of the discipline. There is still too
unlike other disciplines, such as electrical en- much art and craft and not enough engineer-
gineering, software engineering is a relative ing in software development; although the
newcomer. Because of this, its practitioners trend is definitely changing.
do not have at their disposal the wealth of
time-tested practices, procedures and tools so The introduction and growth of digital sys-
readily available to its sister disciplines. In te'ns in the DOD parallel the introduction

2-1

Chapter 2 Introduction to Computer Resources

and growth of digital systems in the commer- growth of digital systems in air-raft, for ex-
cial market place. In fact, the stringent re- ample, is shown in Figure 2-1. In 1966 the
quirements of military systems often FB-111 required an on-board computer
spearheaded the development of computers memory of roughly 60,000 words but by 1988
and software throughout the industry, espe- the B-1B Bomber was approaching on-board
cially during the early years of computer computer memory requirements of about 2.5
development. In the early 1950s all weapon million words. Current and future systems
systems were analog and it wasn't until the will greatly exceed these memory require-
mid-fifties that digital systems were intro- ments with large scale software systems being
duced into weapon systems. During the six- the norm.
ties there was a rapid incorporation of digital
systems with an almost exponential growth 2.2 SOFTWARE IMPACT ON SYSTEM
occurring in the seventies. Some of the
reasons for this rapid growth were: What does the curve in Figure 2-1 tell us? If

one were to use the analogy of constructing a
(a) Advances in integrated circuits (ICs), the brick wall, one can say that a 3000 square foot
basic building blocks of electronic equipment wall requires about three times as many bricks
and digital computers. ICs were being as a l000 square foot wall. It is not necessarily
developed with ever increasing capabilities more difficult to build, it just takes longer.
and an accompanying decrease in power re- Unfortunately this analogy breaks down when
quirements, size and cost. it comes to software.

(b) The introduction of the microprocessor, The impact of software on system design and
which is essentially a computer on a chip, development is illustrated in Figure 2-2 [2].
allowed designers to replace many pieces of The dashed lines represent the average in-
hardware with a single component roughly the fluence of either software or hardware on
size of a postage stamp. system design and development while the

solid lines on either side represent the maxi-
(c) The ever increasing Soviet threat and the mum and minimum range of influence. It is
need to counter it in the face of decreasing 4

defense budgets. This drove the services to 10 T;HOUSANDSOF WORDS

build fewer but smarter and technically supe- 0
N I AIM FOrCE

rior weapons relying more and more on corn- L 1,T Ao.Uc

puters and software. o J , I .16C/D
A 10 E-1A -

R i C-17

(d) The realization that software is inherently D R16 * HH-60A

more flexible than hardware and better able M CS-A U

to accommodate the ever changing threat. E 21 F-15

M 0
0 •, F -111

(e) The tremendous advances made in the R

Y
commercial marketplace in computers and Si •.[J : ; A . z _L0 L .'.
software. 65 0 5 80 85 90 95

YEAR

T'oday, all weapon systems are dependent on I
computers and software. This phenomenal Fig. 2-1 Growth of Aircraft Systems

2-2

Chapter 2 Introduction to Computer Resources

1 -..--- has been decreasing by an equally dramatic
R 'percentage. A personal computer (PC) of

A 0.8 , today has more power than the large com-
T SOFTWARE puters which were the workhorses of early
v 0.6 space programs and it costs a mere fraction of"E,/ . its predecessor. In addition, a PC will sit on a

N 0.4 corner of your desk while the early computers
FR/AE occupied large rooms and required thousands
L / HARDWARE

E.0.2- of watts of electricity and tons of air condition-
N -""- ing.

E 0 ----- -• . . t .L . 2• .a

50 55 60 65 To 75 80 85 90 95 2000 A word of caution is necessary. Figure 2-3
YFAR only refers to large, complex, military systems

Fig. 2-2 Software Impact on System which are produced in limited numbers. In
Design/Development commercial products software is generally

simpler and items are manufactured in very
very clear that in 1950 software had no in-
fluence on weapon systems design. This is 100

because these systems contained no digital
hardware. By 1980, however, the relative in- 60 COMPUTER

HARDWARE W ~FlWASE
fluence of software on system design averaged OEVoLO LNT

about 50% with some systems being in- R 60 .

fluenced by as much as 70% or as little as 30%. c
This means that software considerations af- E 40,-N .'. .••;,,,.,.: SOFTWAR.

fected overall system design and development T 20- / P•.. RT•

about 50% of the time. System engineers .
could no longer make hardware design
decisions without considering the software 0 '-'i ' . .
implications. As can be seen, the trend seems 63 64 65 66 67 68 69 70 73 76 79 82 85

YEAR
to he for an increasing role tor software. Fig. 2-3 Life Cycle Cost Trends
What the figure shows is that software is no
longer merely a part of the system; software large numbers. Therefore the cost of software
has become a system in its own right and has used in appliances, automobiles, toys, and
assumed the integration function for the other commercial products actually comprise
various subsystems of a weapon. but a small fraction of the total cost of these

items [4]. This is depicted in Figure 2-4.
2.3 LIFE CYCLE COST TRENDS

The decreasing size of computer hardware,
Figure 2-2 implies that hardware has been along with their increasing capabilities, hz-.ý
traded for software. Why should that be a resulted in an explosion of applications in our
problem? The problem is one of cost as weapon systems. Software not only performs
shown in Figure 2-3 [3]. This figure shows that many of the functions previously performed
over the last 30 years the cost of the software, by specialized hardware, it also performs
as a percentage of total computer resources many of the functions which would be impos-
cost, has been growing by leaps and bounds sible or impractical to perform with jusc dedi-
whereas the associated computer hardware cated hardware. This tremendous use of

2-3

Chapter 2 Introduction to Computer Resources

computers has come at a price. As Figure 2-3 40

shows, the ratio of computer hardware and 42.5

software expenditures has changed from a SOFTWARE+ HARDWARE 35.7

ratio of 80% hardware and 20% software in B 3) -8.2 W.0

1960 to a ratio of 20% hardware and 80% L 28.2 27.3 2.1

software in 1980. There has been an equally 1 24.9 25.6 _ SofTWARE
0 20 20.4• 23.1

dramatic increase in the costs associated with N 17.0 20.4

supporting the software once the system is s 14-.3 16.5

delivered. The primary reason software S 10. 1.1.4 13.6 HARDWARE

29 .1 ~ 59 .1 6.3 6.5 6.8deveopment and support are so expensive is 2. . . 5.6 5.9 6.1

HARDWARE 84 85 86 67 88 89 90 91 92 93 94 95

YEA3

Fig. 2-5 DoD Embedded Computer Market
HARDWARE In contrast, the amount of money being spent

on computer hardware has barely increased.
Percentage When one considers that computer hardware

is more powerful today then ever before, the
cost for comparable performance has actually

In a circuit For a satellite

in aT% vset control system decreased immensely. Many factors have
contributed to the decreasing cost of com-

Fig. 2.-4 Commercial Software puter hardware but certainly automation has

that both functions are extremely labor inten- been a major contributor. Unfortunately it
sive. It is an ironic fact that an industry which still requires a person to program a computer
has provided the means for other segments of and programmers and other software
industry to automate, has itself failed to specialists are expensive.
automate. There are very few machines and
computer software that will automatically 2.4 EVOLUTION OF DIGITAL SYSTEMS
generate computer programs directly from a
set of requirements. Those that exist are If one were to make a comparison of Korean
limited to very special applications. War vintage aircraft with modern day aircraft,

The cost of DOD software is immense as can OREAN VINTAGIE MODERN DAY

be seen from the chart in Figure 2-5. Accord- Flight Controls Flight Control System

ing to this Electronics Industries Association Navigation Gear Inertial Nav Sys (INS)

study [5], by the year 1990 the cost of software Rder Radar
alone will be approximately $25.6 billion. To EAgines A Engine Control Sys
put that figure in perspective, the total price FuelEContgols A Fuel Management Sys

tag for the B-AB Bomber fleet was around $20 Weapons Weapons Management Sys

billion in 1981 dollars. That included 100 Radios / Communicalion Sys

aircraft, the initial spares, the weapon system Instruments Controls&Displays(C&D)

crew and maintenance trainers and the initial Pilot Pilot
logistics support. The DOD could greatly in-Ote -,-bsstems
crease the strategic bomber fleet, for the
amount of money being spent on software
today. Fig. 2-6 Evolution of Fighter Aircraft

2-4

Chapter 2 Introduction to Computer Resources

one realizes that both aircraft contain the aircraft to go, but the computer actually flies
same types of functional systems (Figure 2-6). the airplane.
A Korean War vintage aircraft contained
flight controls, navigational gear, radar, etc. An F-86, for example, carried navigational
A modern day aircraft has the same type of gear on board to allow the pilot to find his way
systems except it now has a flight control sys- to his destination. This consisted of a mag-
tem, an inertial navigation system or INS, a netic compass, an altimeter for altitude in-
radar, etc. Let's examine some of these sys- dication and perhaps some kind of radio
tems in greater detail, direction finding equipment. With this

navigational gear the pilot was able to
A 1952 F-86 Sabre, for example, had a stick navigate using dead reckoning techniques.
which was physically attached to mechanical Today we have an Inertial Navigation System
linkages. These in turn were attached to the (INS) comprised of gyroscopes, ac-
various hydraulic actuators and control sur- celerometers, and computers to perform the
faces such as elevators. When a pilot moved same function. The INS is aligned before
the stick, there would be an accompanying takeoff and it allows the pilot to accurately
movement of the control surfaces because of navigate from one point to another. This is
the mechanical connection. The amount of only possible because of the compute,. Using
force required to move the stick depended on a known model of the errcr sources within the
how fast the aircraft was flying and its attitude. INS, the computer uses a mathematical tech-
Contrast this with the latest version of the nique known as Kalman Filtering to keep
F-16 where the mechanical linkages have track of the aircraft's exact position over time.
been replaced with electrical wires and
motors. Movement of the stick creates an The Korean War vintage cockpit, packed full
electrical signal which travels down the wires of instruments, has been replaced with a cock-
and activates the motors to physically move a pit containing just a few instruments and con-
control surface. There may also be two or trols and display screens. Any information
more wires to provide redundancy and, since required by the pilot is simply displayed on the
there is no feedback from mechanical screens at the push of a button, anything from
linkages, a means to artificially give the pilot attitude indications to the status of weapons.
"a feel" for moving the control surfaces. They are all under the control of computers.

Furthermore, there are now new subsystems
All of this is done with modern computers. that would not be possible without digital sys-
The signals traveling down the wire are digital tems: diagnostic systems that can display the
in nature and the redundancy checks and the health of all the major subsystems and "expert
artificial "feel" are all controlled by digital systems" that provide the pilot with informa-
computers. Furthermore, the computer gives tion on the various options available during a
the flight control system the ability to "fly" the particular mission.
aircraft in ways not possible if a pilot were the
controlling element. The X-29, the forward In summary, one can say that computers and
swept-wing experimental aircraft, would be software have introduced a whole new dimen-
virtually impossible for a pilot to fly without sion to our weapon systems; improved system
the complex computer dependent flight con- performance: become an aid to the decision
trol system. The movement of the stick allows making process; expanded the capabilities of
the pilot to indicate where he wants the the human operator and in many cases

2-5

Chapter 2 Introduction to Computer Resources

replaced the human operator. In short, they of literally millions of data points generated
have dramatically enlarged the performance in a major test program.
envelope of weapon systems far beyond what
was possible less than 30 years ago. In (.der to train the various maintenance

crews, various subsystem trainers must be
Without modern computers and the as- developed many of which require literally
sociated software, modern weapon systems hundreds of thousands of lines of code and
would not exist. Weapon systems have numerous computers, both large and small.
evolved from systems where computers Two examples are avionics maintenance
played a very minor role to systems where trainers and weapons load trainers. Opera-
their very existence depends entirely on com- tional analysis personnel require very large
puters. scenario software to perform tactics and war

planning. Extensive and complex battle
2.5 WEAPON SYSTEM SOFTWARE management software may be required to

develop mission planning. Operational crews
The discussions so far have centered on the usually train on large software intensive
computers and the software that are em- weapon system trainers whose functions are
beddedinaweaponsystemandareanintegral dependent on millions of lines of software
part of that system. There is, however, a instructions. For logistics support of
whole host of software associated with every electronic equipment, automatic test equip-
weapon system (Figure 2-7) that is not em- ment (ATE) and its associated software must
bedded in the system but is, nevertheless, ab- be developed along with hundreds of software
solutely essential. packages called Test Program Sets (TPSs).

TPSs allow technicians to isolate and repair
DATA• failed electronic components. Lastly, mis-

(REDU•TION) sion preparation software may also be re-\('/FL• ""OFT-A-RE/ / -'OFwE. |TANR

FLIGHT MAINTENANCE quired for use by operational crews in
OSOFTWARE TARS) planning and carrying out their missions.

MPEPISSRION ",, , SENARO/ "X 2.6 CURRENT STATE OF AFFAIRS_RPRTO ANALSI
"SOFTWARE - SOFTWARE

Examination of the current state of affairs

ATE... S %BATTLE , with military weapon systems reveals some
(ATUfTPS) QMANAGEMENT) very unpleasant facts:

SOFTWARE veryunpleaaSOFTWActEs
"CREW

TRAINING (a) Most new systems are extremely complex.SýSOFTWARE/
This is due to a combination of several factors:

Fig. 2-7 Weapon System Software - extremely demanding requirements, which

The software that has been discussed so far is tend to drive designers towards complex solu-
referred to as flight software but a wealth of tions;
other software is required to support a
weapon system. During ground and flight - tight schedules and even tighter budgets,
testing, extensive data reduction computers which tend to negate elegant and simpler
and software are required to aid in the analysis solutions;

2-6

Chapter 2 Introduction to Computer Resources

- and, unfortunately, too many contractors Another problem is that some software
not fully skilled in software engineering tech- managers lack relevant experience. This is a
niques tend to populate the "lowest bidder" universal problem with no quick solutions in
category. These contractors seem to thrive sight. Experienced software managers within
under our current procurement laws and the government are a scarce commodity. In-
regulations. dustry seems to lure the good ones away and

those that remain and rise to management
(b) Digital systems are now the heart and soul positions are not necessarily the most ex-
of all new weapon systems. The flexibility perienced.
offered by digital systems cannot be remotely
approached by analog systems. This trend will A major problem that has plagued the DOD
continue for the foreseeable future, in the past has been the uneven application of

standards and, in some cases, the lack of
(c) Most systems are delivered late, have cost standards. As for the former, too often a con-
overruns, rarely meet performance require- tract simply calls out all the applicable stand-
ments upon initial delivery and are often ards without regard to the fact that many of
ridiculously expensive to maintain, them are contradictory or even unnecessary.

All standards and regulations should be
It would be very unfair to blame all of these tailored for each program. It wasn't until
unpleasant facts just on digital systems and recently, that common programming stand-
software, but it is generally recognized that ards were mandated for all the services.
software is a major contributor, and often the
only contributor, to these problems. Software Throughout the 1960s and 1970s the total
has become the Achilles heel of weapon sys- number of programming languages used for
tems. Not only is it in the critical path of the military systems numbered in the hundreds
system development process but system per- and none of them were compatible with each
formance is dependent on the system other. Most systems used their own languages
software. and their own computers so that transpor-

tability across systems was nonexistent. To a
2.7 HISTORICAL CONTRIBUTORS great extent many systems still suffer from this

problem.
One of the major contributors to the problems
associated with software development has Another contributor to the software problem
been loose and very often nonexistent has been the almost endemic lack of a dis-
management oversight. Since most program ciplined engineering approach to software
managers know little or nothing about development. The better developers have the
software, they concentrate their efforts on necessary discipline to do a good job but even
hardware or system issues and often leave they encounter problems. Unfortunately,
software management to managers who are many software developers only pay lip service
not always part of the mainstream decision to using modern software development
making process. They get involved only when methodologies such as top-down structured
software starts affecting the overall schedule design, object-oriented design (OOD), in-
and by then it is usually too late. This is cremental development, software metrics,
changing because a policy of "benign neglect" stringent configuration management prac-
is no longer acceptable. tices, and integrated software engineering en-

2-7

Chapter 2 Introduction to Computer Resources

vironments. They may write convincing new "shakers and movers" to express their
proposals but they can't always deliver. On leadership and managerial "styles". It also
the government side, the problem is com- provides plenty of time for Congress to cut,
pounded when the contractor is not forced to slice, batter and reap havoc with the budget.
follow a disciplined engineering approach. Although this is also true for hardware, it has
Too often, engineering discipline is sacrificed a more severe impact on software develop-
to those holiest of sacred cows--schedule and ment.
cost.

(d) Requirements are usually not finalized
Somewhat related is the fact that competent until late in the development cycle. This is
software developers are not sufficient in num- partly due to the evolving threat and partly
hers to satisfy the demands of both the due to the longdevelopment period. The end
military and the civilian market place. There result is that designers are shooting at a
are more software projects than there are moving target.
competent software developers, so the less
skillful fill the vacuum. (e) No human endeavor is entirely free of

politics. The program office is no exception.
Lastly one must remember that the software A program manager must not only deal with
that is developed for weapon systems is the management and technical problems but also
most difficult and most challenging type of learn to navigate the more dangE!rous waters
software. Some of the reasons for this dif- of internal and external politics.
ficulty are the following:

(f) Compounding the problem even further is
(a) Most weapon systems have real-time re- the sad reality that computer resources tech-
quirements which add an additional level of nology is rapidly changing. Technology that is
complexity. The software has to respond al- state-of-the-art at the beginning of a major
most instantaneously and correctly, in spite of weapon system development is often obsolete
noise and other types of interference that can by the time the system is fielded. A program
seriously degrade a system. manager must be able to properly balance the

risk associated with using technology that is at
(b) Most weapon systems have a requirernt.. t the cutting edge, but which is not yet fully
for fault-free operation or some level of fault proven, with the risks associated with using
tolerance. This adds additional overhead to more proven but less capable technology.
the software since more checks and redun-
dant capabilities have to be added. These 2.8 MANAGEMENT GUIDANCE
requirements run counter to the require-
ments for speed, simplicity, and real-time Program managers, as well as software per-
response. sonnel, need to be educated and trained. The

Program Managers Course at the Defense
(c) Because of the complexity, many software Systems Management College is an example
developments stretch over p,:riods of three to of this type of training. This education and
five years. During this time there is usually training must be made available to all pro-
significant personnel turnover, especially in gram office personnel. Even if one is not
the government. This results in loss of con- directly involved with software, that person
tinuity and provides ample opportunity for should still have an appreciation for the dif-

2-8

Chapter 2 Introduction to Computer Resources

ficulties involved since all future hardware submitted by the developer. If they are rub-
development will be impacted by software. ber-stamping documents, they should be
Program managers must allow their software replaced. Reviews such as Preliminary Design
personnel to attend courses and seminars so Reviews (PDRs) and Critical Design Reviews
that they can better learn the process. This (CDRs) should be delayed until the proper
training is especially valuable for junior and documents have been thoroughly reviewed.
middle level software managers and en- A developer should not be allowed to slip
gineers, many of who have little or no formal through a gate until it has satisfied all the
training in software engineering. Program requirements for going through that gate; or
managers must never use the excuse that "we until everyone is fully aware of the risks in-
are too busy to let them go now." They will volved by proceeding.
always be too busy. Make the time and let
program personnel attend training classes. As will be seen in a later section of this guide,

early and thorough planning is the only way
All program personnel must lose their fear of that the software problems can be minimized.
software. There is nothing magical about This planning starts during the concept ex-
computers and software as long as time is ploration/definition phase and continues to
taken to learn at least some of the basics, some degree until the system is no longer
Software and computer illiteracy can no used.
longer be tolerated in a program office.

There are no magical solutions! Good
Software and hardware standards should be software development requires extensive
intelligently applied. They should be planning and thorough vigilance. There are
scrutinized and tailored to a specific program. no short cuts or cookbook solutions!
Most standards are written to cover the entire
waterfront and particular programs only deal 2.9 REFERENCES
with a portion of that waterfront. Failure to
do so will create confusion and will eventually 1. Fairley, Richard E., Software Engineering
impact those sacred cows--,chedule and costs. Concepts, Tyngsboro, Mass.: McGraw Hill

Book Co., 1985.
From day one, program managers must pay
attention to software and ensure that program 2. Grove, H. Mark, "DoD Policy for Acquisi-
personnel are doing the job of en(orcing the tion of Embedded Computer Resources,"
developer to follow a disciplined process. The Concepts, The Journal of Defense Systems Ac-
chief software person must be made visible by quisition Management, Autumn 1982, Volume
having to report to the program manager on a 5, Number 4.
weekly basis and on a daily basis during criti-
cal periods. This person should be totally 3. Boehm, Barry, "Software Engineering,"
aware of all of the developer's major activities IEEE Transactions on Computers, Vol. C-25,
and have the facts readily available. No. 12, December 1976.

The program manager must make absolutely 4. Fox, Joseph M., Software and Its Develop-
sure that program personnel actually read and ment, Englewood Cliffs, NJ, Prentice-Hall,
critically evaluate all software documents Inc., 1982

2-9

Chapter 2 Irtroduction to Computer Resources

5. Electronics Industries Association, The 6. Seidman, Arthur H. and Flores Ivan, Ed.,
Military Market: Perspectives on Future Oppor- The Handbook of Computers and Computing,
tunities, Sponsored by the Requirements New York: Van Nostrand Reinhold Company
Committee, Government Division, Nov 1985. Inc., 1984.

2-10

Chapter 3 Technlcal Foundations

CHAPFTER 3

TECHNICAL FOUNDATIONS

3.1 INTRODUCTION

This chapter addresses the basics of computer The incoming data is processed by a computer
hardware and software by describing how a program which is a set of instructions and data
computer works and by defining the concepts that were previously loaded and stored in the
of computer programs and languages. These computer. The details of how these instruc-
basics are intended to provide the uninitiated tions and data are generated and stored in the
with an understanding and appreciation for computer are discussed later in this chapter.
why a software development project must fol-
low a logical and proven process. RECEIVES INPUT DATA

I PROCESSES DATA

This chapter also provides a brief technical INPUT OUTPUTS INFORMATION . OUTPUT

description of the Ada Programming Lan- PERFORMS ACTION
guage and a brief explanation of its technical
and management benefits. .DATA .INFORMATION

SENSORS J.ACTIONS
3.2 INSIDE THE COMPUTER • MODELS SMULATIONS

PROGRAM

In general terms, a computer is a device which . INSTRUCTIONS

receives or "senses" data through input . DATA

devices, processes that data and provides an
output in the form of information or an action. Fig. 3-1 Computer Definition
This is illustrated in Figure 3-1. Incoming
data can originate from a human operator, Once the data has been processed, the corn-
external sensors, or computer models which puter provides information to a human
simulate the external environment, operator; performs a particular action such as

3-1

Chapter 3 Technical Foundations

turning on an actuator or updating a data tile stars, and accelerometers for measuring
base; or provides processed data to a corn- acceleration.The process ofnavigationwould
puter simulation as part of its own input data. involve the following: Step 1: Begin the

process. This wil require some housekeeping
The major components of a computer are the and initializat~on to tell the computer the ini-
input and output (I/O) section, the central tial starting position and the direction in
processing unit (CPU) and the memory unit which the platform is pointing. Step 2: Obtain
as depicted in Figure 3-2. input data from the navigational sensors, i.e.,

the accelerometer outputs and the gyroscopic
3.2.1 Input/Output Section attitude output. Step 3: Compute current

position and velocity based on the internally
For the computer to be a useful device, it must stored program. Step 4: Output this informa-
be able to communicate with people or tion to the operator and/or guidance system.
devices outside itself. This is accomplished This process will be repeated at regular inter-
through input and output devices. Examples vals to provide a continuous flow of naviga-
of input devices are terminals, keyboards, and tional information. For the output to be
sensors such as navigationl instruments, al- timely, the process needs to occur in real-
timeters, fuel level sensors, and temperature time.
sensors. Examples of output devices include
printers, displays, actuators, and electro- The CPU is in control during the entire time
mechanical devices that are part of the it is executing these instructions. Step3above
weapon system. Sometimes the two functions processed the data received from the platform
are combined as they are on a terminal which to produce the necessary information. In this
includes a display screen and a keyboard as- case, the computation involved determining
sembled into a single unit. In short, it is the the change in direction relative to the refer-
computer I/O that provides the interface to enced stable platform and calculating tile
the rest of the system. velocity by numerically integrating the ac-

celeration over time. By performing this
3.2.2 Central Processing Unit process in real-time and providing a con-

tinuous output, the aircraft's position and
The central processing unit is the brain of the velocity will be known at all times
computer. It is in the CPU where the actual
processing or computations take place. The
processing is based on the computer program ecu
or set of instructions which have been stored EXTERNAL

in the computer's memory. WORLD 4
i,

As an example of the type of processing to be
performed by a CPU, consider an aircraft
avionics system which uses an inertial plat- 4p

form and a computer program stored in
nemnory to perform the navigational function. OUTPUTI MEMORY a

An inertial platform is a device that utilizes
gyroscopes to maintain a fixed attitude with I
respect to some external reference, usually Fig. 3-2 Computer Components

3-2

Chapter 3 Technical Foundations

3.2.3 Memory Unit execute programs provides considerable
power. During execution of a program, the

The third major component of the computer computer fetches an instruction out of
is the memory unit. One of the important memory, performs that instruction and then
aspects of a computer is the ability to store in steps to the next instruction. This continues
its memory the instructions and data required until all the instructions have been per-
for the computer to perform its functions. By formed. The main or internal memory is lo-
storing different instructions and data, the cated within the computer, but memory can
computer can perform many different tasks also be located externally in memory devices
within the bounds imposed by the system's such as fixed disks, or tape drives. Internal
design and implementation, In the previous memory is limited in capacity so external
example, a set of instructions stored in devices, which have more capacity, are used
memory allowed the computer to perform for long term storage of large programs and
navigational computations. Using a different data.
set of instructions, the computer could be
used to determine the status of the hardware 3.2.4 Computer Hardware
components of the entire system. This as-
sumes that the appropriate input data is Computer hardware comes in many shapes
provided by the various subsystems. The coin- and sizes. Figure 3-3 shows Texas
puter has the capability to perform these func- Instruments' MIL-STD-1750A computer,
tions and many more. This ability to store and which is used in integrated avionics applica-

4;

: •.. . , : . '

Fig. 3-3 TI's MIL-STD-1750 Military Computer

3-3

Chapter 3 Technical Foundations

tions such as the Navy's Advanced Tactical Architecture (RISC) System/6000
Aircraft (ATA), the Air Force's Advanced IOWERstation 320 computer and it is much
Tactical Fighter (ATF), and the Army's more powerful and larger than the MIL-STD-
Abrams M1MA Tank. About the size of a 1750A computer.
bread box, its performance is comparable to
the original IBM personal computer. 3.3 COMPUTER RESOURCES

A much larger system is shown in Figure 3-4. Now that the computer basics have been in-
This system is IBM's Reduced Instruction Set troduced, it is time to address the bigger pic-

Fig. 3-4 IBM RISC System/6000 Computer

3-4

Chapter 3 Technical Foundations

ture of what is referred to as computer resour- weight, power, application, or other technical
ces. All too often important aspects of a considerations. The special purpose corn-
software project are arbitrarily relegated to puter or processor may take the form of a
positions of insignificance because their im- "blackbox", an assembly of cards, or even a
portance is not understood and, therefore, single card which is embedded in tile system.
receive little or no program management at- This means that the computer is an integral
tention until it is too late. To preclude this part of the weapon system.
from happening, program managers (PMs)

With today's Very High Speed Integrated Cir-

SOFTWARE FIRMWARE HARDWARE cuit (VHSIC) technology, a computer can be

INPUT A i1O1010 - h;.' I built on a single integrated circuit, a piece of
01 101W silicon not much larger than a 1/4 by 1/4 inch

Nl r B 1101
C= A+B 10000111 c o square. To the untrained eye, an embedded

computer system may be physically indistin-
guishable from the rest of the system. An
example would be a computer used in the
flight control system of an air-to-air missile or

.. . . Iw te navigational computer in a satellite.
PRODUICT t

SPEC "iA3.3.2 Software
PAPE Software is defined by the Federal Acquisi-

PAPERWARE _PEOPLEWARE_ tion R egulations (FA R) as the set of instruc-
Fig. 3-5 Computer Resources tions and data that are executed in a

must be familiar with all the components that computer. This definition clearly distin-
make LIp and support a computer system. Only guishes data items, such as documentation
by fully understanding all the pieces of the and specifications that are called out in the
puzzle, can PMs properly manage computer contract, from the deliverable software such
resources. This doesn't mean that PMs must as an operational flight program. Although
have detailed knowledge of a comlputer some common definitions of software often
processor's operation or have the ability to include all the documentation as well, the
generate software code for projects. PMs DOD definition includes only the executable
should, however, have a basic understanding form of the instructions and data. Software is
of computer resources and know how these not something you can touch or feel. It is
resources fit into the overall weapon system intangible: it has no mass, no volume, no
architecture. The components of computer color, no odor, no physical properties. It can
resources are shown in Figure 3-5. only be represented by a listing or other forms

of documentation. Software will be ad-
3.3.1 Embedded Computer Ilardware dressed in greater detail later in this chapter.

In weapon systems, tile program manager 3.3.3 Firmware
needs to be concerned with mission critical
computer resources as defined in Chapter 2. The evolution of computer hardware has also
Generally, a weapon system is designed with brought about the marriage of hardware and
a special purpose computer because of software in a combination called firmware.

3-5

Chapter 3 Technical roundationa

Firmware is defined as software that has been puter manufacturers preclude programmers
implemented in hardware using memory from inadvertently changing the resident
devices such as read only memory (ROM), software, commonly referred to as the operat-
programmable ROM (PROM), erasable ing system software, and possibly causing the
PROM (EPROM), and electrically erasable com1puter to fail or to operate improperly.
PROM devices (EEPROM). These devices,
and other similar devices which are generical- Require permanent software - Programs
ly referred to as integrated circuits (ICs), that have been implemented in firmware are
allow software to be permanently imple- immediately available in memory and do not
mented and not easily changed. In order to have to be loaded when the computer is first
change software implemented in firmware, powered up. This also provides a form of
one of two actions must be taken. If the protection from power failures. A thoroughly
firmware is ROM or PROM, then these tested and stable program is a good candidate
memories or ICs must be physically removed for firmnware.
from a circuit card and replaced with other
RO Ms or PROMs that have been Firmware introducesan additional dimension
programmed with the new software. If the to software. Because it is software, all the
firmware is EPROM, then the ICs must be software configuration management practices
removed, reprogrammed, and reinstalled, also apply to firmware. Once the software is
The EEPROM can be altered in circuit but implemented in firmware, however, the ICs
this requires special additional equipment or are managed as hardware configuration
circuitry. The EPROM is usually altered using items. In order to provide for future support,
an ultra-violet light source and the EEPROM a method must exist which traces the specific
can be altered using electrical means. software version to a unique piece part.

Because of the difficulty encountered in 3.3.4 Peopleware
changing software that has been implemented
in firmware, firmware is used only in applica- People are also an important part of the sys-
tions that: tem. The program manager tries to satisfy the

user's need through a reasonable system
Require Speed - Many signal processing design, but it is the user and support personnel

applications, such as electronic warfare sys- who are the ultimate judge of the delivered
temns, must receive, analyze, categorize and product's qtuality. This is why it is important
jam radar signals from hostile threats almost that the program manager involve the user in
instantaneously. They cannot tolerate the defining requirements, in evaluating test
relatively slow processing speeds associated results, and interpreting system interface re-
with general purpose computers. In these quirements. Other chapters will address the
cases the various algorithms or programming importance of involving the user and support
steps are implemented in firmware in order to personnel in the development process.
significantly increase the processing speed.

3.3.5 D)ocumentation
Require protection from unauthorized

tampering or alterations - The software re- Because software development is largely an
quired to run a computer is oftentimes stored intellectual exercise, documentation is vital
in firmware. By using these devices, corn- for communicating during the software

3-6

Chapter 3 Technical Foundations

development and support phase. Documenta- cludes noi only the physical property, such as
tion must be a logical by-product of the the building, host computers, and utilities, but
development process. As software develop- also the supporting software documentation
ment tools and computer programming lan- needed for development and support. A
guages become more sophisticated, software development facility and a software
documentation will become more and more support facility are virtually identical since the
of an automatic by-product of the develop- same software and hardware tools are re-
ment process. Until then, however, the pro- quired for both. The facility may consist of a
gram manager must insure that adequate host computer, which may be either a large
documentation exists to accommodate mainframe computer or a minicomputer,

-OPalong with terminals or work stations for the
HOST COMPUTER programmers, analysts, testers, librarian, and

m. . --7 other personnel (Figure 3-6). The facility may
DATAs also be connected to other similar facilities

IF I through local area networks (LANs). In order
to perform software development and sup-

, .port, several software programs are required.
} •.- TEST TEST These programs inchlude compilers, linkers,

PLAN PROCjloaders, simulators, editors, and other
CONSOLES development and management tools.

3.4 COMPUTER ARCHITECTURE

The computer can be thought of as a collec-
Work Work Work Work tion of hundreds of thousands of electrical
Station Station Station Station switches. Each of these switches can be in one

1 of two states, on or off. Since the switch has

Fig. 3-6 Support Facility two states, the status of any one "witch can be

development and follow-on support. It is im- represented by a "0" or a "1", i.e., on = I and
portant to remember that software is intan- off = 0. The binary numbering system can be

gible, with no physical properties, and that used to represent the state of these switches

documentation is the only means available for since it too has only two digits, 0 and 1. Instruc-
describing and keeping track of its develop- tions and data can therefo;e be represented

ment progress. by a string of Os and Is and by using the ruk•s
of Boolean logic, named after the English

3.3.6 Development/Support Facilities mathematician and logician George Boole.
These switches are interconnected to build

A computer system consists of hardware, modern electronic computers. Modern con-
software, firmware, peopleware, and paper- puters, no matter how large or how small,
ware as indicated in Figure 3-5. All these perform the following basic types of opera-

elements, which are brought together in a tions or instructions:
support facility, must be available during the
development and support phases of the ARITHMETIC
weapon system. The support facility is an ira- add multiply

portant aspect of computer resources. It ii- subtract divide

3-7

Chapter 3 Technical Foundations

LOGICAL it contains more information in a single word
AND NOT and can access larger segments of stored data.
OR EXCLUSIVE OR A computer architecture is designed around a

specific word size since the internal corn-
TRANSFER CONTROL munication between the CPU, memory and

branching subroutines loops I/O is dependent on the number of bits in a

DATA MOVEMENT DECIMAL
CHARACTER BINARY CODE EQUIVALENT

load store move
0 00110000 48

INPUT AND OUTPUT 1 00110001 49
2 00110010 50

in out 3 00110011 51

SYSTEM
HALT interrupt A 01000001 65

B 01000010 66

3.4.1 Bits and Bytes C 01000011 67
D 01000100 68

E 01000101 69
In the binary numbering system a bit repre- F 01000110 70

sents one digit, either a "0" or a "1". A wc.rd is
a string of bits that represent instructions or Fig. 3-7 ASCII Alphabet (Partial)

data; the larger the string the more informa- word. For example, a computer that has an
tion it can represent. Any character can be eight-bit architecture (8 bit buss) communi-
represented by using "coding" techniques. cates eight bits at a time (in parallel) while a
One widely used technique is the American 16-bit machine communicates 16 bits at a
Standard Code for Information Interchange time. This effectively doubles the throughput.
(ASCII) which is used for encoding the al-
phabet, numbers, and other special charac- 3.4.2 Instruction Set Architecture
ters. There are 128 characters in the ASCII
set, while another widely used technique, the The computer architecture and its internal
IBM set, has 256 characters. As an illustra- logic structure are designed and implemented
tion, part of the ASCII alphabet and number by the computer manufacturer to perform a
coding scheme is shown in Figure 3-7. finite and fixed set of instructions. A com-

puter with a minimal set of instructions can
Notice that the ASCII standard uses eight bits perform the same computations as one with a
or digits to represent a character. This eight larger set. The difference, however, may ap-
hit word length is commonly referred to as a pear in the execution time and the sequence
BYTE and was usually the smallest word size of instructions in the software program. Let's
in earlier computers, particularly in personal assume that a programmer is required to
computers (PCs). The eight bit structure of generate a computer program to perform a
PCs has been replaced by the 16 bit word, with particular task. A program written for a
32 bit structures quickly taking their place. machine with a large set of instructions will
Large mainframes have always LIsed larger usually require fewer lines of machine in-
word sizes such as 32 or 64 bit word lengths. structions than a program written for a
The advantage of a larger word length is that machine with a smaller set of instructions.

3-8

Chapter 3 Technical Foundations

The difference in actual machine instruction bit architecture communicates internally 16
sets is dependent on the manufacturer's ob- bits at a time (in parallel). A computer that
jectives in design. Computers can be has a 32 bit architecture communicates 32 bits
designed and optimized for specific applica- at a time. This effectively gives the computer
tions. Some computers are designed to per- with 32 bits a greater throughput or faster
form very rapid mathematical computations; execution capability.
others are designed to manipulate large
amounts of data in a very efficient manner; Although there are no official standards for
and still others are designed with a very commercial hardware designs and computer
powerful graphics capability. No computer, architectures, the surge of sales in personal
however, can be built so that it can perform computers has made de facto standards of
equally well in all applications. There is no some Intel and Motorola computer architec-
industry standard for computer design and tures. Within the DOD, however, there does
each manufacturer is free to design and target exist a standard for ISA, namely MIL-STD-
its machine for the application of its own 1750A. This standard has been used success-
choosing. This means that each computer has fully in both Air Force and Navy programs but
its own internal and fixed repertoire of in- its application is usually limited to airborne
structions. This fixed set of instructions is and embedded computerapplications. This is
called the computer's instruction set architec- because this ISA was initially designed by the
ture (ISA) and in order to execute a computer Air Force in the 1970s around a 16-bit word
program on a particular machine, that pro- size. It was specifically intended for airborne
gram must be specifically targeted or written applications and it has a limited memory
for that machine's ISA. In other words, the capacity. Today's rapidly evolving computer
binary instructions and data that make up a technology is quickly making MIL-STD-
software program are different for computers 1750A ISA obsolete. The advantage of
with different ISAs. Instruction set architec- standard ISAs is portability of executable
tures are the "blueprints" that describes the software.
interface to the set of electronic hardware or
circuitry to execute the different types of 3.5 SOFTWARE LANGUAGES
operations or instructions.

Software languages are the vocabulary or lex-
Word size is an important part of the com- icon used to instruct computers on the func-
puter architecture. Recall the earlier discus-
sion on the communication of instructions ADDRESS BUSS

and data within the machine. Part of the basic CONTROL "SIGNALS

design is determining the internal signal corn- 1
munication paths. This internal communica-
tion is accomplished through the use of an INPUT

e!ectronic component called a buss. The buss & CPU MEMORY

provides parallel signal paths between the OUTPUT
CPU, memory, and external devices. A com-
in Figure 3-8. The design architecture will t DA, IBUSS

also determine the internal communication
within a computer. A computer that has a 16- Fig. 3-8 Computer Busses

3-9

Coapter 3 Technical Foundations

tions they will perform. Software languages puter has its own unique machine language
can be categorized into four groups: machine and, because of this, machine language
languages, assembly languages, higher order programs are not transferable between dif-
languages, and application generators. ferent type machines.
Software languages are also referred to by
generation, with machine language being the 3.5.2 Assembly Language
first generation and application generators
being the fourth generation languages Early in the history of computer development,
(4GLs). engineers learned to use the power of the

computer to assist in the programming
3.5.1 Machine Language process. Instead of directly using binary code,

the engineer developed a shorthand notation-
Machine language is the most primitive and al language that was easier to understand.
basic of all the languages and the only lan- This notational language was called assembly
guage that can be used in a computer. It is language. Assembly language represents each
written in binary code and provides the instruction with a mnemonic expression and
machine the instructions it is to execute. The data is represented by its equivalent decimal
binary coded words are those words that were number. The engineer or programmer still
designed for the machine's ISA. Program- structures the problem solving steps the same
ming in machine language, forces the way the machine executes them; but now the
programmer to structure the problem solving computer itself is used to perform the trans-
steps in the same way the machine will ex- lation from assembly language into machine
ecute them. When computers were first in- language. For example, the assembly lan-
troduced, that was exactly how engineers guage program in Figure 3-10 will find the
constructed their computer programs. Since average of "N" number of grades.
data, instructions, and memory locations are
represented by Os and ls (See Figure 3-9), this This program now needs to be translated into
method is very tedious and error prone and the binary code that the machine can execute.
becomes nearly impossible for practical This translation process, known as "assembly",
problems. In addition, because every corn- is performed by another program called an

"assembler". The program written in assembly
0101oo00W ,1ooooo 11oooooW 00111110 language is known as the "source" program
01000001 1,0o, 11000000 00111010 and the binary code created by the assembler01011000 0,1100000 11000000 100000310

010,(=1 1011co00 •oUoCoD 0000oW is called the "object" program or code. The
oo,•ol 0,1ooo o0,,ooooo 0o0oo,0 lo assembly language program (e.g., the source01011010 101100)11 00000000 O0000000

OLOOO1 co,,oo1 00000oooo o,•oloo program in Figure 3-10) would then become0 1o 010o 0o1 1 o o ,O C 1 o o 00 0 0 1 o0o1b0F0
010111o0 10o0W 1,oooooo 1o1OW1o the object program shown in Figure 3-9.
010i1101 1010000)0 110C0000(10000010

11100001 0W100000 OO000000 O00000wO0

0o0olooo 11olow 11o 00011W COMMThe introduction of assembly languages
ioDO11 I,11o1 ioo 110100W cooo,,oo greatly simplified computer programming
,000011 11111110 and resulted in an increase in productivity.
O•C0000W DOW 0oDo00o ooo O W 010000

oooDOo ooooooo ODw 001 000WUse of assembly language, however, does in-
,•o00oM oooooo 0000" o,00"0oi troduce some inefficiency in execution be-
ooooooo oooooooo o00DOW O000OOOO cause the translation process introduces some

Fig. 3-9 Binary Object Code overhead (additional code). The general ap-

3-10

Chapter 3 Technical Foundations

STMT SOURCE STATEMENT
1 AVERAGE CSECT

2 STM 14,12,12(13)
3 *THIS PROGRAM FINDS THE AVERAGE OF N INTEGER VALUES*

4 BALR 12,8

5 USING *,12

6 ST 13,SAVE + 14
7 LA 13,SAVE

8 *STANDARD LINKAGE FROM OPERATING SYSTEM*
9 L 6,N *REGISTER USED TO INCREMENT*
10 LA 11,0 *REGISTER 11 USED FOR SUMMING*

11 LA 2,SSE *ADDRESS OF FIRST NUMBER*

12 LOOP A 11,0(3) *SUM= SUM + NEXT NUMBER*
13 LA 3,4,(3) *GET ADDRESS OF NEXT NUMBER*

14 BCT 6,LOOP
15 M 10, = D'1' *EXTEND SIGN BIT TO HIGH ORDER*

16* *REGISTER PAIR*
17 10,N *INTEGER PART OF AVERAGE IS*

18* *PLACED IN REGISTER 11 (HEX)*
19 *AND REMAINDER IN REGISTER 11*

20 XDUMP

21 L 13,SAVE+4

22 LM 14,12,12,(13)

23 BR 14

24 SAVE DS 18F

25 N DC F-6-

26 ADDR DC F-16,32,442,988,-26,388'

27 END
28 =F'I'D

Fig. 3-10 Assembly Language Program

proach to translation employed by an as- not transferrable among different types of
sembler can not always optimize the binary machines.
instructions to be as efficient as binary code
written directly by a good programmer. Be- 3.5.3 High Order Language
cause the assembly language source program
makes it easier to understand and to correct The next advance in programming occurred
errors, modifying programs becomes easier with the introduction of higher order lan-
and the benefits accrued from this far out- guages (HOLs). HOLs use statements that
weigh the inefficiency introduced by the are more English-like, easier to understand,
translation process. more productive, easier to support, and less

dependent on the computer design. Ex-
Assembly language, however, retains an al- amples of higher order languages are
most one for one correspondence with the COBOL, FORTRAN, Pascal, and Ada. The
instruction set of a particular machine. This CMmmon Business Oriented Language
means that every machine instruction set has (COBOL) was created in order to help the
a different assembly language. When business community manage large amounts of
programming in assembly language, the data. FORTRAN, which is an acronym for
programmer has to tailor the problem solving FORmula IR!.slator, was developed for
steps to the particular machine's repertoire of scientists and engineers and allowed the crea-
instructions. This dictates a unique assembly tion of mathematical algorithms and
language for every machine. Because of this programs without the need to know the details
uniqueness, assembly language programs are of a particular computer ISA. Although these

3-11

Chapter 3 Technical Foundations

languages can be used in applications other the front end, which is the toughest to
than those they were designed for, they have develop, remains unchanged. In industry,
found their broadest application in the once the first compiler is developed, sub-
domain they are best suited for, namely scien- sequent compilers for different machines can
tific and business applications respectively, be quickly constructed. A partial Ada pro-
Different problem domains have created the gram for the previous programs shorn in Fig-
need for new languages tailored to the ure 3-9 and Figure 3-10 is found in Figure
peculiarities of that problem solving process. 3-11.
As a result of this need, hundreds of HOLs
have been developed. 3.5.4 Application Generators (4GL)

As with assembly language, a higher order All the earlier languages, including the high-
language must be translated into a particular order languages, are classified as "procedural"
machine code. This process of translation is languages. The user must define in detail the
called "compiling" and the translator is a sequence of operations required to solve a
software program called a compiler. A com- particular programming problem. A more
piler is generally a large and complex program recent development in programming technol-
that translates the HOL source program to
the machine executable object program. Be- with TEXT0o; use TEXTIo;

cause the object program is machine depend- wih GRADE PACKAGE; use GRADE_PACKAGE;

ent, the compiler translation is also machine procedure AVERAGEGRADES is

dependent. That means that each different NEXT.GRADE GRADEPACKAGE.GRADE;

computer must have its own unique compiler. THISHISTORY GRADEPACKAGE.GRADE_ HISTORY;

GRADECOUNT : NATURAL: = 0; -- number of grades to enter

Compilers are typically desigi ed with the package GRADE_10 is new INTEGER O (GRADE PACKAGE.GRADE);

flexibility for translating HOL source code to package NATURALIO is new INTEGERIO (NATURAL);

many different machines. This is done by bgiu put ('Enter the numbe•r of grades:")

designing the compiler with a front end and a NATURAL O.get (GRADECOUNT);

back end. When the translation is being per- while GRADE COUNT > 0 loop

formed, the source program instructions are begin

first processed by the front end to create a putG(REnlert(ade:);
GRADEJO.get (NEXT_GRADE);

program in a generic intermediate assembly- skipline;

like language. This front end process is the GRADE PACKAGEADC, (THISHISTORY NEXT_GRADE);

most difficult part of the translation. The GRADE-COUNT:= GRADECOUNT-i;

second step is to process this intermediate exception

program with the back end of the compiler. when DATA ERROR =
The purpose of the back end, or code gener- ,putline ('Not a valid grade; please enter only INTEGERS

& p between' & INTEGER 'image (GRADE'first)

ator, is to translate the intermediate code into & '..'& INTEGER'image (GRADE'las));

the machine language of the "target" comn- .ine;

puter (the one that will actually execute the
program). The code generation process of a
compiler is similar to an assembler. To trans- put ('The Average is:');

GRADEIO.put (GRADE PACKAGE.AVERAGE (THIS HISTORY));late to different target computers, the nelnn.

developer has to build the unique code gen-
erator for that particular target computer and Fig. 3-11 Ada Program

3-12

Chapter 3 Technical Foundations

ogy, called application generators or fourth- This language has gained a vast number of
generation languages (4GLs), can greatly in- users because it made it easy to manipulate
crease programmer productivity. A 4GLs spreadsheet data [5].
allows an end user to build applications
programs without resorting to coding the Fourth-generation languages can be very
details in a particular computer language. beneficial in developing mission support
Since most application generators are non- software; however at the present time there
procedural, they allow the programmer or are few languages targeted toward the em-
user to define the problem while the system bedded computer market. These languages,
defines the steps required to solve the prob- in general, tend to develop machine language
lem. that is even less efficient than the machine

language developed by HOLs, which
To make the distinction between the proce- mitigates against using them to develop real-
dural and nonprocedural languages clearer, time systems.
one may use the analogy of providing instruc-
tions to a taxi driver. With the procedural 3.6 ADA
language one must tell the driver exactly what
to do. "Drive 500 yards due North. Turn left. For most DOD applications, policy requires
Drive 380 yards, etc." With a nonprocedural that developers use the Ada programming
language one may say, "Take me to the language. This policy will be discussed in
Criterion Theater on Main Street." The most more detail in Chapter 4; however, because of
powerful nonprocedural languages may per- the widespread implications of the policy, the
mit one to simply say, 'Take me to see Gone program manager needs to know more about
With the Wind." The taxi driver will then the language and its supporting environment.
search theater listings to determine where the
movie is playing. In this case the taxi driver 3.6.1 Ada Design
might say that the request is illogical, if the
nearest theater at which this movie is playing The Ada programming language was
is in another city or state. designed with three overriding concerns: pro-

gram reliability and support, programming as
Fourth-generation languages vary greatly in a human activity, and efficiency [1]. The result
their power and capabilities. While some of these concerns was the creation of a lan-
fourth-generation languages can be used to guage that embodies the principles of modern
create complete applications, many are report software engineering practices. Applying
generators or graphics packages. Most are these principles, or tools of the trade, helps
dependent on a well-defined data base, and one deal with two very real and aifficult
are designed for only a specific class or range aspects of large-scale software developments:
of applications. Vendors of the more corn- complexity and change.
prehensive products describe their more
limited competition as "not true fourth- Ada was specifically designed to encourage or
generation languages." However, it is often help the engineer or programmer develop
better to use a language designed for a limited software that is reliable and simple to main-
set of functions because it is easier to learn tain. In particular, Ada emphasizes program
than a full programming language. Lotus 1-2- readability over ease of writing. For example,
3 is a good example of this kind of language. the rules of the language require that program

3-13

Chapter 3 Technical Foundations

variables be explicitly declared a particular 3.6.2 Ada Compilers
type such as real, integer, Boolean, etc. Since
the type of a variable is unalterable, compilers No high order language can avoid the address-
can ensure that the only operations per- ing the issue of compiler translation efficien-
formed on variables are those allowed by the cy, because a poor compiler can result in poor
rules of the Ada language syntax. This run-time efficiency and inefficient use of
prevents the programmer from attempting to storage affecting all machines and all
perform an illegal operation such as multiply- programs. During Ada specification develop-
ing an integer value with a string variable. ment, every proposed construct of the lan-
Furthermore, error-prone notations have guage was examined in the light of current
been eliminated because the language avoids state-of-the-art compiler implementation
the use of cryptic encoded forms in favor of techniques. Any proposed construct whose
more English-like constructs. Finally, the implementation was unclear or that required
language offers support for separate compila- excessive machine resources was rejected [2].
tion of program units in a way that facilitates However, there are substantial differences
program development and support. among validated Ada compilers. To explain

the reasons for these differences, it is ap-
A major strength of Ada lies in its ability to propriate to explain what validation means.
perform aumerous checks both during corn- Validation is the official DoD process used to
pilation and at run time. The richness of the demonstrate that a candidate Ada compiler
syntax makes it more difficult for a program- conforms to the Ada language standards.
mer to code and compile a program, but once Relevant policy for validation is documented
compiled an Ada program is more apt to run in the Ada Compiler Validation Procedures,
correctly than a program written in any other Version 2, published by the AJPO, May 1989.
language. In other words, Ada enforces a cer- This policy states that Ada compilers must be
tain amount of discipline into the program- validated by the Ada Validation Facility
ming process. This is a significant (AVF) managed by the Ada Validation Or-
contribution to reliable software. ganization (AVO). A compiler will receive

certification if it passes all applicable tests in
Concern for the human programmer was also the Ada Compiler Validation Capability
stressed during the language design. An at- (ACVC) test suite. The test suite, which is
tempt was made to keep the language as small now updated every eighteen months, encom-
as possible by trying to avoid the pitfalls of passes six different classes of test and includes
excessive complexity. Ada uses simpler more than four thousand individual tests.
designs to provide language constructs that While the testing is extensive, the individual
correspond intuitively to what the users would tests tend to test simple capabilities rather
expect. than capacity or synergistic issues. Validation

does not guarantee that the compiler is error
Like many other human activities, software free, nor does it imply anything about the
programs are becoming larger and their performance or functionality of the compiler.
development is becoming ever more
decentralized and distributed. Consequently, Nelson H. Weiderman of SEI states that
the Ada designers provided the ability to as- "There is an important difference between
semble a program from independently validation and evaluation. Validation tests
produced software components. conformance to ANSI/MIL-STD-1815A.

3-14

Chapter 3 Technical Foundations

Validation cannot be relied upon for determin- loose coupling and tight cohesion. A module
ing whether a given Ada compiler is fit for use can be descril- .d as an entity or unit whose
in a particular application." Evaluation issues internal elements are tightly bound or related
are covered in the Ada Adoption Handbook: (cohesion) but with light interconnections
Compiler Evaluation and Selection [5]. (coupling). In design, one would collect all

logically related resources into one m)odule.
3.6.3 Ada Language Features This is the principle of localization.

Modularity and localization help the
Ada has incorporated the following software programmer to deal with complexity as well
engineering features: as with change. The effects of change can be

better controlled or isolated through modular
Abstraction is a simplified description or design and localization.
specification that suppresses some of the
details or properties. A good abstraction is All these features contribute to reliable,
one that emphasizes data that is significant maintainable, understandable, and ,;fficient
and suppresses immaterial details. This designs. They also allow the programmer to
facilitates the management of complexity in cope with the complexities of large-scale sys-
software development and maintenance. For tems and the inevitability of change. Ada in-
example, a vehicle is an abstraction at a corporates all of these attributes. The
general level. One can provide further detail different concepts embraced by Ada are not
to the class of vehicles by identifying an new to programming languages. What is uni-
automobile. Then one can further describe que is that Ada is the first language to corn-
the various characteristics of an automobile bine all these features into a single language.
such as a six cylinder engine, two door sedan
and so on to describe a specific automobile. There are some unique features provided by
This of course can continue down to the smal- Ada that are not provided by any other
lest component necessary. Notice that each production languages: the package, exception
lower level adds detail. handling, tasking, and generics.

Information hiding is the technique of Packages are entities or collections of related
providing only the essential information objects and their operations. This collection
necessary for interfacing with a given unit. A of resources can be viewed as a wall surround-
specification control drawing is an example of ing a collection of logically related entities
information hiding. This type of drawing such as operations, data types, and related
provides information on the inputs and out- program units [2]. The package enforces the
puts of a particular device without providing principles of modularity, localization,
any details (1i the internal structure. This abstraction, and information hiding.
prevents detailed information from confusing
essential information. Abstraction and infor- Exception handling provides a controlled way
mation hiding assist programmers deal with to exit from an abnormal event. In real-time
complexity. operations, one cannot allow an abnormal

event, such as division by zero or a register
Modularity is the principle of logical structur- overflow, to halt the entire process. Through
ing. One decomposes a design through levels exception handling, abnormal events are
of abstraction so that it has the properties of flagged during processing and purposefully

3-15

Chapter 3 Technical Foundations

handled to prevent a catastrophic failure. It is important to understand that Ada
This is done in one of three ways: allowing provides a means for achieving good designs
execution to follow an alternate path, restart- because it embodies principles of good sys-
ing the operation at a controlled point, or tems and soitware engineering. It is also im-
overriding the current data with default portant to know that the Ada programming
values. Exception handling is one way of language itself is only a small part of the
designing graceful degradation into the process of designing sound systems. The
software, design and development of good software re-

quires more than just a good programming
Tasking is very important in real time opera- language. One must still employ sound design
tions. Tasking allows concurrent or parallel practices and procedures, strong configura-
processing to occur in the same or separate tion management practices, and good system
processors. In the real world, processes are design tools and aids. In addition, all program-
generally concurrent. This approach to 'hers must be adequately trained on the use of
design breaks the sequential mindset but is these methods and tools.
one of the features of Ada that is most often
criticized. Real-time applications require 3.6.4 Ada Environment
fast, reliable completion of tasks whose
priorities are constantly changing; however, In the past, software tools were as diverse and
Ada completes each task before starting hardware unique as the languages they sup-
another task and Ada fixes priorities at con- ported. The goal of the early developers of
pilation time and is therefore inflexible to thc Ada was to develop a total environment which
changing environment or the real world. supported the systems development life cycle.
Work-arounds are currently available to cir- To achieve portability, the environment is
cumvent this problem, and this weakness will broken into the Kernel Ada Programming
be one of the areas addressed when the lan- Support Environment and the Ada Program-
guage specifications are updated. Ming Support Environment.

Generics is a feature that reduces complexity 3.6.4.1 Kernel Ada Programming Support
and encourages the production of reusable Environment (KAPSE)
code components. The concept of generics is
similar to a template whereby a structure and The KAPSE contains all low-level features
associated operations are defined for later use necessary to rehost onto another system. It
in specific application. For example, a also supports: database access, input/output,
generic routine can be created for sorting any terminal to tool access, and the runtime sys-
number of items. The process of sorting is tern
the same whether one is sorting numbers,
names, or objects. In other languages, one 3.6.4.2 Ada Programming Support Environ-
creates different sort routines for each ap- ment (APSE)
plication. With the generic capability in Ada,
one routine will suffice. This reduces the need The APSE typically consists of:
for multiple programs for performing the
same task. It also aids in dealing with large Editor. An interactive tool, preferably one
complex systems by introducing common that is language specific for creating
generic packages. documentation and source code.

3-16

Chapter 3 Technical Foundations

Debugger. A debugger is a programmer A PDL is a formal language (sometimes
productivity tool for finding errors. It should referred to as pseudo-code) for specifying the
be integrated with the compiler to provide "blueprint" for software implementation.
source code information. When Ada is used as a PDL, the properties of

the language allow the "blueprint" of a
Linker. The linker joins together object software design to be run through an Ada
modules into executable modules which will compiler with the restriction that it doesn't
run on the target machine, execute. This allows the compiler to perform

all the syntactic and semantic checks it nor-
Configuration Manager. This tool is used to mally performs. No other HOL, currently in
keep track of the different versions of the use, has its own PDL. Several Ada-based
documentation and code. PDLs exist. An example of one is IEEE Stand-

ard, IEEE-STD-990-1987.
Static Analyzer. This tool provides informa-
tion such as number of lines of code, number A PDL is not a panacea for software develop-
of comments, level of complexity, and ment. Poor software designs can be produced
measures of coding style. using a PDL. PDLs, however, have major ad-

vantages which can make the process of
Dynamic Analyzer. This tool monitors and software design, code, test and integration a
reports the execution behavior of object code less painful process.
so that the programmer can "fine tune" the
system. 3.7 Ada SURVIVAL

Library Management Tools. These are tools It is important to understand that the Ada
which automatically recompile and relink ob- programming language is still in a period of
ject modules, transition, and although the risk of using Ada

is much less than it was only a few years ago,
Test Tools. Tools to automatically generate there are still several factors to consider when
test data and compare actual output to ex- evaluating the risks of using Ada. The
pected output. Software Engineering Institute's publication

entitled Ada Adoption Handbook: A Progrwn
3.6.4.3 Ada Program Design Language Manager's Guide [4] provides considerable

detail and suggestions for dealing with Ada in
One of the most important tools currently today's environment. Figure 3-12 contains a
used for designing software is a program checklist of helpful hints for those embarking
design language (PDL). The DOD's policy
concerning lPDLs is given in DOD Directive -Get training and experience

- Be aware of Ada's benefits and shortcoming
3405.2, Use ofAda in Weapon Systemns which - Select a contractor with a proven track record

states: - Select a compiler based on:

-- characteristics of your application

"An Ada-based program design language sa -- evaluation of compiler performance
l)C 'ed lainti 1 gtlie i ,v e. H f -- evaluation of vendor support services

bue drig desAign.ling~) o)J',voftwar. U - Invest in system support tools
a PDL that can be successfidly compiled by - Know your risk and manage it

validated Ada compiler Lt encouraged in order
to Jacilitate the portability of the design." Fig. 3-12 Ada Survival Checklist

3-17

Chapter 3 Technical Foundations

temn development. One must understand that 3. Taft, Darryl K., "Revisions to Ada Standard
work-arounds exist for many of the known Expected After Reviews", Government Com-
deficiencies of Ada. puter News, Jan 22, 1988.

3.8 REFERENCES 4. Foreman, John and John Goodenough,
Ada Adoption Handbook: A Program

1. ANSI/MIL-STD- 1815A, Ada Programming Manager's Guide, Software Engineering In-
Language, 22 Jan 1983. stitute Technical Report CMU/SEI-87-TR-9,

May 1987.
2. Booch, Grady, Software Engineering With
Ada, Menlo Park, The Benjamin/Cummings 5. Weiderman, Nelson H. Ada Adoption
Publishing Co., 1983. Handbook: Compiler Evaluation and Selec-

tion, Software Engineering Institute Techni-
cal Report CMU/SEI-89-13, Mar 1989.

3-18

Chapter 4 Software Acquisition Policy

CHAPTER 4

SOFTWARE ACQUISITION POLICY

4.1 INTRODUCTION

This chapter summarizes the DOD's policies (ADP) equipment within the federal govern-
governing the acquisition of mission critical ment. On that date, however, Public Law 89-
computer resources (MCCR). In dealing with 306 (otherwise known as the Brooks Bill) was
policy, it may be useful to understand the signed by President Johnson. This bill was
history behind its implementation. Towards intended to promote competition and insure
that end, this chapter will provide a historical stability in the procurement of ADP resour-
perspective of the various laws, regulations, ces. By 1976, 36% of the systems were
and initiatives that relate to MCCR. procured in a fully competitive manner and,

according to the General Services Ad-
As indicated in the previous chapter, com- ministration (GSA), over $681 million in cost
puters and software have become an extreme- avoidance has been achieved in 302 competi-
ly vital component of a weapon system. In a tive ADP contracts [I].
span of only twenty-five to thirty years, the
dependence on software and cost of software Traditionally, computers and software have
has grown tremendously. With this growth, been viewed by top level management as tools
there has been an accompanying rise in the for improving efficiency and conserving
technical and management problems across resources. Although this is true, comnputer
all of the services, resources need to be treated in the same man-

ner as other acquisitions, not as mere tools.
4.2 BROOKS BILL Although primarily directed toward the

procurement of ADP equipment, the Brooks
Prior to 30 October 1965, there was no form Bill forces federal agencies to analyze their
of standardization or control over the ADP requirements, like they would for other
procurement of automatic data processing systems, and compete for the most economic

4-1

Chapter 4 Software Acquisition Policy

and efficient system. In an effort to achieve department's first formal recognition that
this goal, the Brooks Bill assigned respon- software is critical to weapon systems and
sibilities as follows: the GSA was given the should be managed as a configuration item in
authority for procuring AD1P resources re- the same manner as hardware. As such,
quired by federal agencies; the Office of software requirements should be validated
Management and Budget (OMB) was to pro- and risk analyses performed prior to a Mile-
vide policy guidance and overall leadership stone II decision in order to insure that the
(i.e., they were to act as mediator in resolving software requirements reflect the operational
any user and GSA disputes); and the National requirements. All of the management tools
Institute of Standards (formerly the National used in the development of hardware should
Bureau of Standards) was to develop ADP be applied to software (e.g., configuration
standards. management, baseline\milestone manage-

ment, and life cycle support planning tools).
"[he Brooks Bill, however, does not permit the
GSA to interfere with an agency's (user) In an effort to help carry out the intent of this
determination of its ADP requirements. The directive, a Management Steering Committee
user determines its requirements for ADP for Embedded Computer Resources was also
e(lu ipment and the potential method of established in 1976 and its charter was con-
procurement. The method of procurement is tained in the directive. The purpose of the
then approved by the GSA and any disputes steering committee is to increase the visibility
resolved by the OMB. and improve the management of computer

resources within the DOD, to formulate a
The DOD considers MCCR exempt from the coordinated technological base program for
provisions of the Brooks Bill because MCCR software, and to integrate computer resource
is not specifically addressed in the ADP policy into the normal process of major system
definition. Therefore, the DOD has con- acquisitions.
tinued to procure MCCR as part of the
weapon system u sing major system acquisi- The steering committee is composed of two
tion guidelines. Additional legislation in the boards: the Executive Board and the Manage-
form of the Warner-Nunn Amendment and ment Advisory Board. The Executive Board is
various DOD Directives and Instructions has responsible for the development of policy
furthcr approved this interp)retation, necessary for the acquisition and manage-

ment of computer resources in major defense
4.3 1)01) I)IRECTIVE 5000.29 systems. It consists of a representative from

the Assistant Secretary of Defense (Installa-
I)OD Directive 5000.29, Management of tions and Logistics), who is the chairman, the
Computer Resources in Major Defense Systents Deputy Director Research & Engineering;
was published on 26 April 1976. Its purpose the Director, Telecommunications and Coin-
was to establish a DOD policy for the manage- mand and Control Systems; the Assistant
ment an1d control of coml)uter resources Secretary of Defense (Comptroller); and the
during the life cycle of major weapon systems. Assistant Secretary of Defense (Intelligence).

"[he directive was the first major step under- The Management Advisory Board is respon-
taken by the DOD to address the growing sible for coordinating technology efforts
software problem. It represented the among the DOD components, for conducting

4-2

Chapter 4 Software Acquisition Policy

policy impact assessment for the Executive Warner-Nunn Amendment or the Brooks Bill
Board relating to computer resources, and for is the intended use of the equipment and ser-
reviewing computer resource technology vices, and not their commercial market place
programs for policy consistency. It consists of availability. Interpretation of these policies
representatives from the Navy, Army, Air must not be lightly rationalized and used as an
Force, Office of Joint Chiefs of Staff, Defense excuse to depart from sound business and
Communications Agency, National Security management practices. Where there is doubt
Agency, Defense Advanced Research as to the applicability, case-by-case deter-
Projects Agency, and Deputy Director minations shall be made by the Under
(T&E). Secretary of Defense (Research and En-

gineering), in coordination with the Assistant
4.4 WARNER-NUNN AMENDMENT Secretary of Defense (Comptroller) [3].

The Warner-Nunn Amendment (Section 908 4.5 MCCR STANDARDIZATION
of Public Law 97-86, the DOD Authorization
Act, 1982) was implemented in order to The explosion in the number of weapon sys-
broaden the range of embedded computer temn computer applications that occurred
resources excluded from the provisions of the during the late 1960s and the 1970s, resulted
Brooks Bill. It was intended to provide the in a comparable explosion in the number and
DOD with more control over the acquisition types of computers and programming lan-
of computer resources that are an integral guages. By the mid-seventies, there we-e
part of weapon systems. literally hundreds of different computer

programming languages being used to
The Warner-Nunn Amendment defined generate military systems software. Along
those computer resources which are exempt with these languages, there was an almost
from the Brooks Bill. It defined MCCR as equal number of different computers in use.
those computer resources that perform the The result was that engineers, technicians,
following functions, operation, or use [2]: and computer programmers who were sup-

porting a particular weapon system could not
(a) Involves intelligence activities; support a different weapon system without

costly retraining and delays. Rarely would
(b) Involves cryptoanalytic activities related two different weapon systems use the same
to national security; computer or the same programming lan-

guage. This led to needless duplication of
(c) Involves the command and control of effort and inefficient use of human resources.
military forces; Since each system had its own computer and

programming language, each ',ystem was uni-
(d) Involves equipment that is an integral part que and required unique resources.
of a weapon system;

In order to minimize weapon system software
(e) Is critical to the direct fulfillment military support costs and to promote interoperability
or intel ,ence missions. between the various systems, the DOD

focused on three areas: higher order lan-
The essential test as to whether the acquisi- guages (1-1OIs), the software development
tion of computer resources is covered by the process, and computer hardware. The

4-3

Chapter 4 Software Acquisition Policy

specific policy and guidance for each area are Air Force JOVIAL J3
the following: JOVIAL J73

HOLs Later that instruction was amended to include
ATLAS as an approved HOL for automatic

DOD Directive 3405.1, test equipment. Concurrently, the DOD in-
Computer Programming Language Policy itiated a fully competitive program to develop

a common, preferred, single HOL for DOD
DOD Directive 3405.2, software development programs. The out-
Use of Ada in Weapon Systems come of these efforts was the Ada program-

ming language. DOD Directive 3405.2, Use of
Software Development Ada in Weapon Systems, was published on

March 30, 1987. This directive established
DOD-STD-2167A, DOD policy for the use of Ada as the single,
Defense System Software Development common, HOL in the development of com-

puters integral to weapon systems. Com-
DOD-STD-2168, puters are defined as being integral to a
Dufense System Software Quality Program weapon system if they are:

Computer Hardware (a) Physically a part of, dedicated to, or essen-
tial to twe real time performance of the mis-

MIL-STD-1750A, sion;
Slirborne Computer Instruction Set Architec-

ture. (b) Used for specialized training, diagnostic
test and maintenance, simulation, or calibra-

IiOls and computer hardware were already tion;
discussed in Chapter 3. DOD-STD-2167A
and 2168 are addressed in Chapter 5. (c) Used for R & D of weapon systems.

4.6 DOD DIRECTIVE 3405.2 The directive applies to all new weapon sys-
tems entering into development (prior to Full

Standardization of HOLs has been an issue Scale Development (FSD)) and to major
within the DOD since the eaj ly 1970s. In 1976 upgrades (greater than 1/3 modification) to
DOD Instruction 5000.31, Interim List of existing systems. There are three exceptions,
DOD Approved Higher Order Languages however, to using the Ada programming lan-
(1101) was issued as an interim measure to guage:
limit the number of DOD approved HOLs to
six: (a) If, on the effective date of the directive, a

programming language other than Ada was
i)OD FORTRAN already in use during the FSD phase of a

COBOL weapon system, then that particular language
Army TACPOL may continue to be used throughout the
Navy CMS-2M deployment and software support phases un-

CMS-2Y less the system is undergoing a major software
upgrade.

4-4

Chapter 4 Software Acquisition Policy

(b) Ada is preferred, but not required, as a test (a) Off-the-shelf applications packages and
language to be used solely for hardware advanced software technology;
under test equipment.

(b) Ada-based software and tools;
(c) Ada is preferred, but not required, for
commercially available, off-the-shelf (c) Approved standard HOk-s.
software that will not be modified by the
DOD. 4.8 Ada PROGRAMMING LANGUAGE

Except for the conditions stated above, a As mentioned earlier, after the successful
waiver is required. Authority for issuing development of the first HOLcompiler, many
waivers is delegated to each DOD component new HOLs were quickly introduced. The
only on a specific system or subsystem basis, proliferation of languages within DOD had
For each proposed waiver, a full justification resulted in an unwieldy logistics problem.
will be prepared and will include analysis of Each different language had its own unique
developmental risk, technical performance, support requirements. In 1975, Malcolm
life cost, and schedule impact. Currie, then Under Secretary of Defense for

Research and Engineering (USDRE), sug-
4.7 DOD DIRECTIVE 3405.1 gested that the DOD consider using just one

software language. In 1976, an interim policy
The overall policy for DOD computer lan- was issued requiring the use of "approved"
guages, DOD Directive 3405.1, Computer higher order languages listed in DOD Instruc-
Programming Language Policy, was published tion 5000.3 1. At about the same time a corn-
2 April 1987, three days after the Ada direc- mittee called the Higher Order Language
tive. It superseded DOD Instruction 5000.31 Working Group was formed to review existing
and revised the list of approved DOD HOLs HOLs to determine candidates for a single
to be used for the development and support DOD language. Their charter was to look for
of all computer resources managed tinder HOLs specifically geared for weapon system
DOD Directive 5000.29 and DOD Directive acquisition. One of their goals was to find a
7920.1 (See Section 4.13). The approved list language that supported both real-time
of the DOD programming languages is: Ada, processing and large scale software develop-
C/ATLAS, COBOL, CMS-2M, CMS-2Y, ment programs. The HOLwas also supposed
FORTRAN,, JOVIAL (J73), MINIMAL to support modern programming techniques
BASIC, PASCAL, and SPL/1. and practices such as top-down and structured

design.
This directive stresses standardization of
HOLs, and establishes Ada as the single, corn- The Language Working Group's January
mon preferred language within the DOD. 1977 evaluation conclUded that no existing
When Ada is not used, only the other ap- language met all the DOD requirements but
proved standard languages listed shall be that some, such as Pascal, Algol, and P1-1
used. This directive serves to limit the number could form a good basis for designing a "new"
of HOLs used in the DOD and facilitates the language. In July 1977, as a result of an exten-
transition to Ada. The order of preference is sive evaluation process, a new set of language
based upon life cycle cost and impact as fol- requirements was established. The govern-
lows: ment initiated four contracts for the design of

4-5

Chapter 4 Software Acquisition Policy

this new DOD language. After exhaustive The major concept behind the use of Ada is
design evaluations, a final selection was made the enforcement of modern software en-
for one contractor to develop the new lan- gineering principles. It is the real strength
guage which became known as Ada. The lan- behind the Ada programming language.
guage was named after Lady Augusta Ada
Byron, Countess of Lovelace, who is credited 4.9 SOFTWARE ENGINEERING AND
with being the first programmer. She was a TECHNOLOGY
well educated mathematician who suggested
and wrote the first programs for Charles A great deal of effort has been applied to the
Babbage's "Analytic Engine", a predecessor of area of software engineering, especially the
the modern computer. The winning contrac- application of systems engineering to the
tor was the French based 1-loneywell-Bull software development process. Numerous or-
Corporation, and the design team was led by ganizations have been created and/or tasked
Jean Ichbiah. Their product, the Ada with evaluating methods for improving
Programming Language Specification, MIL- software quality and reliability; for reducing
STD-1815, was officially published on 10 development and support costs; and for con-
December 1980. In June 1983, it became an trIlling the management of software develop-
American National Standards Institute ment. The main programs that have been
(ANSI) standard and was officially published initiated are:
as ANSI/MIL-STD-1815A on 22 January
1983. In March 1987 it became an Interna- (a) Very High Speed Integrated Circuits
tional Standards Organization (ISO) stand- (VHSIC) - The VI-ISIC Program Office was
ard. The European software community has created in 1980 by the DOD in order to al-
been quick to adopt Ada. leviate deficiencies in military integrated cir-

cuits (ICs). Unlike tile early days of IC
In June 1983 when Dr. Richard DeLauer, technology, the DOD was no longer the driv-
then the USDRE, directed that Ada be used ing force behind technological innovation nor
on all new major programs, he had been led tile largest user of IC chips. The commercial
to believe by the DOD software community market place was now dictating IC develop-
that the necessary technical support (i.e., ments by virtue of the fact that it was by far the
compilers) for Ada would be ready. Unfor- largest consumer of IC products. This meant
tunately, this was not the case and this lack of that military applications had become a
supporting tools is probably responsible for a specialty and a highly customized business.
majorit' of the bad initial publicity Ada may The commercial market place had no need for
have re :eived. The fact remains, however, extremely fast, highly specialized, low-volume
that Ada is a good language for use on MCCR IC products; therefore the DOD took the in-
as well as for general purpose applications. itiative, through the V1HSIC program, to ac-
What was initially missing were the support celerate the development of this technology.
resources required to develop Ada software;
the same resources that are required to Another problem plaguing military
develop software in any HOL. Tile need for electronics has been the unusually long time
support was well recognized and initial ,-orn- it takes to incorporate a new product into a
pilers and tool sets to aid in the development weapon system once tile product is introduced
of Ada software are now becoming readily into tile commercial market place. It is not
available, unusual for a product to appear in a weapon

4-6

Chapter 4 Software Acquisition Policy

system up to five years after its commercial education; and conducted numerous software
appearance. In order to speed up this process, engineering conferences.
the VHSIC Program has supported the
development and insertion of VHSIC chips (d) Defense Science Board (DSB) - A DSB
into military systems. This gives developers Task Force on software was originally con-
and acquisition managers a military qualified vened in 1981 by the Under Secretary of
microelectronic technology that is on a par Defense (Acquisition) to review a draft DOD
with commercially available technology. At Instruction on standardizing computer
present, VHSIC technology is being intro- hardware. The DSB recommended cancelling
duced iwo -t least twenty-seven major sys- any further tasking in this area. The Air Force,
tems. This technology has the potential for however, had alrer jy developed a stand-
greatly improving system performance [4]. ardized ISA for a sixteen bit airborne con-
Great advances are being made in computer puter (MIL-STD-1750A). Later in the year,
hardware. The challenge to the software corn- the DSB was tasked with reviewing overall
munity is to capitalize on this wealth of software acquisition, management, and corn-
hardware technology. Software needs to be puter resource technology procedures and
developed to fully use the capability of this providing recommendations for rectifying any
new hardware. problems. The Task Force's September 1987

report, stated that the major problems with
(b) Software Technology for Adaptable Reli- military software development were not tech-
able Systems (STARS) - The STARS Pro- nical problems, but management problems.
gram Office was established in 1983 by the They recommended that the DOD re-ex-
DOD to investigate ways of reducing software amine and change the attitudes, policies, and
development costs, to increase software sys- practices regarding software acquisition [5].
tems reliability, to investigate softwar.- auto-
mation techniques, and to look at applications 4.10 SOFTWARE SUPPORT
for reusable software.

The Joint Logistics Commanders Joint Policy
(c) Software Engineering Institute (SEI) - Coo.dination Group on Computer Resources
The SEI, located at Carnegie-Mellon Univer- Management established a sub-panel in 1979
sity, was placed under contract by the Air to specifically look into post-deployment
Force (Electronics System Division, software support (PDSS) and the procedures
Hanscom AF13) in 1984. They were tasked required to provide adequate software sup-
with investigating the transition of new port during and after transition. PDSS will be
software technology, analyzing software discussed in Chapter 7.
development environments, and providing
education in the software and system en- 4.11 TOP LEVEL SERVICE DIRECTIVES
gineering process. The SEI has recommended AND GUIDELINES
changes to the Federal Acquisition Regula-
tions on software data rights provisions [5]; The following is a list of the guidance docu-
developed an educational program on ments for the respective services. All of these
software engineering; established liaisons documents stem from the guidance provided
with a variety of educational institutions in by DOD Directive 5000.29, Management of
order to disseminate curriculum information Computer Resources in Major Defense S),-
and material for undergraduate and graduate terns.

4-7

Chapter 4 Software Acquisition Policy

Navy ASDP 800-5
Software Development Capability/Capacity

SECNAVINST 5200.32 Review, 10 1987
Management of Embedded Computer Resour-
ces in Department of the Navy Systems, Jun 79 Army

OPNAVINST 5200.28 DARCOM-R-70-16
Life Cycle Management of Mission Critical Management of Computer Resources in Bat-
Computer Resources for Navy Systems, 25 Sep- tlefield Automated Systems, 16 July 1979
tember 1985

Assistant Secretary of Army Policy Letter
OPNAVINST 5230.21 Standardization of ECR, 1 July 1980
Instruction on Standard Embedded Computer
Resources AMC-P 70-13

AMC Software Management Indicators, 31
NAVELEXINST 5200.23 January 1987
Instruction on General Software Management

Marines

TADSTANDS
Tactical Digital Systems Standards" A through MCO 5200.23
D on standard definitions, computers, Management of ECR in the Marine Corps, 19
programming languages, reserve capacities, August 1982
and documentation.

4.12 SOFTWARE DATA RIGHTS
Air Force

The following definitions are relevant to
AFR 800-14 software data rights:
Life Cycle Management of Computer Resour-
ces in Systems, 29 September 1986 Copyright - A copyright protects the expres-

sion of an idea through unauthorized copying
AFSCP 800-14 or reproduction. It is easy and inexpensive to
Air Force Systems Command Software Quality obtain by simply filing an application with the
Indicators: Management Quality Insight, 20 copyright office and providing a copy for the
January 1987 Library of Congress. No examination of the

material is required.
AFSCP 80043
Air Force Systems Command Software Quality Trade secret - Protects the underlying ideas,
Indicators: Management Insight, 31 Jan 1986 concepts, procedures, formula, pattern,

device or compilation that derives economic
AFSC/AFLCP 80045 value by not being readily available to others.
Software Risk Abatement (Draft), 1988. Must maintain secrecy (information is not

public domain).
AFSCP 800-5
Software Independent Verification and Valida- Patent - Protection by trademark or trade
tion (IV&V) (Draft) name. It is expensive, uncertain, and time

4-8

Chapter 4 Software Acquisition Policy

consuming (may take two years to obtain). Instruction 7920.2, "Major Automated Infor-
Patents destroy trade secret protection be- mation Systems Approval Process" on 20 Oc-
cause patent disclosures are quite complete. tober 1978. These two documents established

the policy for the procurement of general pur-
Restricted rights - Software developed totally pose computers or ADP equipment primarily
by non-government funds and usually intended for use in business applications and
licensed to users. subject to the provisions of the Brooks Bill.

AIS defines procedures for the acquisition of
License agreements - Agreement between a equipment which is designed, built, operated,
contractor and the government (or another and maintained for the sole purpose of col-
contractor) limiting the use and the copying lecting, recording, processing, storing,
of data which has been commercially sold retrieving, and displaying information. These
(rights to use, disclose, or reproduce). systems usually have large data storage re-

quirements and are used for business type
The Federal copyright laws, patent laws, and applications such as payroll, accounting, and
state trade secret laws provide legal protec- inventory. The function of these two DOD
tion of a contractor's computer software. The documents is very similar to that of the DOD
Copyright Act of 1976 was amended in 1980 Directive 5000.29. Some of the similarities
to include computer programs. The Office of include the promotion of life cycle manage-
Federal Procurement Policy (OFPP) was ment, visibility, cost effectiveness, stand-
tasked by a 10 April 1987 Executive Order, to ardization of the approval process, and
develop a firm national policy in favor of com- emphasis on requirements' validation.
mercial rights [6]. In the meantime, FAR Sub-
part 27.4 and 52.227-14 provide guidance to 4.14 SUMMARY
the program office on software data rights.
Specific language in accordance with these Proliferation of software and computer
clauses of the FAR should be included in the resources has occurred since their introduc-
contract, both for the protection of the tion in the late fifties. The Brooks Bill was
government and the contractor. passed in 1965 to promote competition and to

regulate how ADP should be acquired and
4.13 AUTOMATED INFORMATION SYS- managed within the government. The em-
TEMS phasis in this chapter, however, has been on

the acquisition policy for software exempted
Although this chapter deals primnarilywith the from the Brooks Bill.
computer resources associated with weapon
systems, it may be useful to briefly discuss the In 1976 the DOD issued Directive 5000.29.
DOD policy on automated information sys- This directive provided guidance on the
terns. management of software and embedded com-

puter resources. Management Steering Comn-
After the DOD had taken steps to provide mittee for Embedded Computer Resources
initial guidance on the management aspects was established to guide this effort. This was
of weapon system computer resources, it pub- followed by software workshops in 1979 con-
lished DOD Directive 7920.1, Life Cycle ducted by the Joint Logistics Commanders'
Management of Automated Information Sys- Joint Policy Coordination Group on Comn-
tems (AIS) on 17 October 1978 and DOD puter Resource Management. For the past

4-9

Chapter 4 Software Acquisition Policy

several years, a major DOD focus has been Processing (ADP) Equipment and Services, 1
the standardization of the software life cycle. February 1982.

4.15 REFERENCES 4. VHSIC Program Office, VHSIC Annual
Report for 1986, Office of the Under Secretary

1. Thirty-eighth Report by the Committee on of Defense for Acquisition, 31 December
Government Operations, Administration of 1986.
Public Law 89-306, Procurement of ADP
Resources by the Federal Government, 1 Oc- 5. Report of the Defense Science Board Task
tober 1976. Force, Military Software, Office of the Under

Secretary of Defense for Acquisition, Sep-
2. Section 2315 of Title 10, United States tember 1987.
Code.

6. "Commercial Rights Will Be Protected,"
3. Memorandum of Deputy Secretary of Washington Technology, 17 December 1987.
Defense, Acquisition of Automatic Data

4-10

Chapter 5 Software Development Process

CHAPER 5

SOFTWARE DEVELOPMENT PROCESS

5.1 INTRODUCTION

The development of a weapon system re- The main point is that the software develop-
quires integrating technical, administrative, ment process must be scientific and dis-
and management disciplines into a cohesive, ciplined. This is not different from the
well-planned, and rigorously controlled hardware development process. As with
process. As a critical component of a weapon hardware, the goal of the soft.iare develop-
system, software must be developed under a ment process is to consistently produce a
similarly disciplined engineering process. In quality product, within schedule and cost.
Software Engineering Concepts [1], Richard
Fairley defines software engineering as: With the publication of DOD-STD-2167A,

Defense System Software Development, the
"...the technological and managerial discipline DOD took the first step toward a stand-
concerned with systematic production and ardized, systems engineering approach to
maintenance of software products that are software development [3]. This standard is
developed and modified on time and within cost supported by other military documents and
estimates." describes a standard process and documenta-

tion for computer software development. To
Barry Boehm [2] defines software engineer- use this standard effectively, the program of-
ing as a discipline that: fice must have a thorough understanding of

the system being developed; particularly the
"...involves thepractical application ofscientific overall system requirements and con-
knowledge to the design and construction of straints.
computer programs and the associated docu-
mentation required to develop, operate, and Requirements must be defined early through
maintain them." trade studies and prototyping. Traceability of

5-1

Chapter 5 Software Development Process

requirements must be maintained throughout All weapon system development programs
the acquisition life cycle and any requirement begin with a determination of system level
that cannot be traced up to a higher require- re, direments. These activities occur during
ment should be modified or eliminated, the Concept Exploration (CE) and the

Demonstration/Validation (D/V) phases of
The material presented in this chapter will the acquisition cycle.
describe activities that occur in a "typical" pro-
gram. The reader should understand that real The Systems Requirements Review (SRR)
programs seldom actually follow this "typical" may be held after the initial determination of
profile. Phases can occur concurrently; they system functions (functional analysis) and the
can be by-passed altogether; protracted; or preliminary allocation of these functions to
condensed to satisfy the needs of the overall configuration items. The SRR provides an
program objectives. The point to understand opportunity for an initial insight into the
is that although the process is somewhat con- developer's direction, progress and conver-
stant, its chronological occurrence is not gence on a system configuration. The System
fixed. The following sections describe the Design Review (SDR) is a review of the over-
classical approach to software development, all system requirements in order to establish

the functional baseline documented by the
5.2 SUMMARY OF DEVELOPMENT AC- system specification. The functional baseline
TIVITIES should allocate requirements to hardware and

software configuration items.
Figure 5-1 presents an overview of the
development activities of an integrated The development of both hardware and
software and hardware system as reflected in software can begin once the Functional
DOD-STD-2167A. Baseline is established. These activities occur

Hardware

HWRqmts IDevelopment
Analysis P - .. Software

Des i gn I I I -I---

De ig Dataign / ad
DeigaL brication

HW"•
• '.

SR D SR PD D RR PAPC FR

SyslemSystem

Rqmt •"DR" e..... -' - --- -.. .-- 1 g / •lFORD F &

Analysis AllocatdR & Test

C,.L.PORj -. C;SC Integ I Test I••CSD _ ... Coin &• & Testi-- •
I - . Detailed I S IT...st..

/aselne Ba Prelim IiuDesignratio B.ln

Analysis Software
S........Development

SRR SDR SSR PDR CDR TRR FCA PCA FOR

Functional Allocated IDevelopmental Product

Basli•nne BaselineI Configuration IP Baseline

Fig. 5-1 Software/Hardware Development

5-2

Chapter 5 Software Development Process

in the Full Scale Development (FSD) phase testing. Both Functional Configuration
and are monitored through reviews and audits Audits (FCA) and Physical Configuration
as described in MIL-STD-1521B, Technical Audits (PCA) will be conducted on hardware
Reviews and Audits for Systems, Equipment, and software configuration items to establish
and Computer Resources. The Allocated the respective Product Baselines. After a sys-
Baseline for software should be established at tern level Formal Qualification Review
the Software Specification Review (SSR). For (FQR), the integrated system is turned over
hardware the allocated baseline is normally to the government for operational testing as
established at the Preliminary Design Review defined in the system's Test and Evaluation
(PDR), or no later than the Critical Design Master Plan (TEMP). Successful completion
Review (CDR). of this testing indicates that the product is

fully defined and ready to be manufactured.
Product development starts once the design For hardware, the production line would
effort is completed. (For systems using new begin to assemble carbon copy items. For
functions, procedures, and techniques, it may software, turning out copies is a trivial
be necessary to actually perform some trial process. The product is complete and needs
coding and testing in order to complete the only to be duplicated on the required media
design.) For hardware this building effort is for transfer to the target system computer.
called fabrication and for software it is called
coding and testing. Testing is further sub- 5.3 SYSTEM REQUIREMENTS ANALYSIS
divided into Computer Software Unit (CSU) AND DESIGN
testing and Computer Software Component
(CSC) integration and testing. After the Figure 5-2 depicts the activities and products
items are built, formalized testing takes place associated with the CE and D/V phases. The
in accordance with approved test plans and CE and D/V phase activities are system
procedures. A government Test Readiness oriented to:
Review (TRR) is conducted to determine the
developer's readiness to perform formalized (a) Define overall project objectives;
acceptance testing. Completion of software
testing will lead to system integration and (b) Determine project feasibility;

SYSTEM . .
REQUIREMENTS System Spec (Prelim)

S..ANALYSIS

system
Requirements System Spec

System/Segment Design Doc
Software Requirements Spec (Prelim)
Interface Requirements Spec (Prelim)

SYSTEM Operational Concept Document (OCD)
DESIGN Software Development Plan

Configuration Mgmt Plan

System O - W R
Design, SOFTWARE
Review DEVELOPMENT

SRR SDR SSR
Functional Baseline

Fig. 5-2 System Requirements

5-3

Chapter 5 Software Development Process

(c) Develop acquisition development interface, control functions, and mission
strategy; analysis.

(d) Establish resource cost and schedule; (c) Tradeoff and Optimization - The effects
of system constraintu such as the operations

(e) Define the interrelationships between concept, the support concept, performance
hardware and software; requirements, logistics, availability and

maturity of technology, and limitations on
(f) Define technical and business functions cost, schedule, and resources are determined.
and performance. Alternative computer resources approaches

are studied to:
The first step is to generate the system level
requirements and reflect them in a System/ - meet operational, interoperability, and
Segment Specification (SSS) (Type A support requirements;
Specification). It doesn't make any difference
whether it is a hardware only, a software only, - determine how the system requirements
or a hardware and software system; the most for reliability and maintainability will be
important and critical aspect of weapon sys- satisfied;
tern development is to "nail down" the system
requirements which must first be finalized at - determine how requirements for system
the functional level, before being allocated to security will be met;
hardware and software. Recognize that newer
software development practices use trial A determination will also be made regarding
coding and testing as a method of refining the suitability of standard computer lan-
derived software requirements. guages and instruction set architectures.

The requirements, finalized through a series (d) Risk - For each approach, the risk as-
of engineering studies and tradeoffs, include: sociated with computer resources is

evaluated. Risk areas include compiler
(a) Requirements Refinement - The overall maturity, availability and maturity of the
system requirements, including constraints, software support tools, loosely defined or in-
should be examined to identify the factors that complete interface definitions, and lack of
drive requirements for computer resources. adequate computer memory or throughput
These factors may include system interfaces, capability.
interoperability, communication functions,
personnel functions, the anticipated level and 5.3.1 System Design
urgency of change, and requirements for
reliability and responsive support. System Design begins -n or about the time of

the SRR. The major function of System
(b) Operational Concept Analysis - The Design is to establish the functional baseline
operational concept should be analyzed in of the system by updating and approving the
order to determine the role of computer system specification and the operational con-
resources. Particular attention is paid to re- cept; by developing the initial subsystem/seg-
quirements for mission preparation, operator ment designs; and by refining the systems

5-4

Chapter 5 Software Development Process

engineering planning activities to be defined in DOD-STD-2167A and consists of
employed during system's development, eight major activities: Systems Requirements
Typical products are: Analysis/Design, Software Requirements

Analysis, Preliminary Design, Detailed
(a) System Specification; Design, Coding and CSU Testing, CSC In-

tegration and Testing, and CSCI Testing,
(b) System/Segment Designs; Systems Integration and Testing. These

steps typically occur during FSD, although
(c) Configuration Management Plan (CMP); they may occur one or more times during each

of the system life cycle phases [4]. This is
(d) Computer Resources Life Cycle Manage- especially true if software prototyping is per-
ment Plan (CRLCMP); formed during the Concept Demonstration

and Validation Phase. The steps are not
(e) Preliminary Software Requirement linear since software development is iterative
Specification (SRS); in nature and any step may be repeated many

times during the course of system develop-
(f) Preliminary Interface Requirements ment. For many software developments it is
Specification (IRS); necessary to plan for these iterations prior to

establishing a firm allocated baseline.
5.4 SOFTWARE DEVELOPMENT

Managing software is very similar to manag-
Before discussing software development, ing hardware; both require discipline and
some definitions are in order: control in order to succeed. An important part

of the control process is the formal deter-
Computer Software Configuration Item mination of whether or not the developer is
(CSCI) - A configuration item for computer ready to proceed to the next step. This is
software. usually determined through a series of design

reviews and audits. Software reviews and
Computer Software Component (CSC) - A audits can occur in conjunction with hardware
distinct part of a computer software con- reviews, but they do not necessarily have to.
figuration item (CSCI). CSCs may be further It is important that appropriate system level
decomposed into other CSCs and Computer reviews be held at strategic intervals. This will
Software Units. focus everyone's attention on system design

and leads to timely baselines for the hardware,
Computer Software Unit - An element the software, and all the interfaces. Software
specified in the design of a Computer development has two major reviews that are
Software Component (CSC) that is separately separate from hardware reviews: the Software
testable. A CSU is the lowest level of software Specification Review (SSR) and the Test
decomposition. Readiness Review (TRR).

Weapon system software is partitioned into The SSR is a formal review of a CSCI's re-
CSCIs based on the program office's manage- quirements as specified in the software
ment strategy. Each CSCI is managed in- specifications. A collective SSR for a group of
dividually and follows its own development configuration items, addressing each con-
process. A software development process is figuration item individually, may be held

5-5

Chapter 5 Software Development Process

when such an approach is advantageous to the based on the System Specification. The
government. Its purpose is to establish the means of testing and examining the software
allocated baseline for preliminary CSCI are also identified. During requirements
design by demonstrating to the government analysis, prototype versions of high risk areas,
the adequacy of the software specifications. user interfaces, and/or systems skeletons may

be partially designed and coded. Prototyping
The TRR is a formal review of the is an excellent tool for performing require-
contractor's readiness to begin formal CSCI ments analysis.
testing. It is conducted after software test
procedures are available and CSC integration The developer should also identify support
testing is complete. The purpose of the TRR tools and resources, and establish timing and

SOFTWARE Software Requirements Specification

REQUIREMENTS Interface Requirements Specification
ANALYSIS

, SOFTWARE "
SOFTWAREPRELIMINARY

SPECIFICATION
REVIEW

DSG

SDR SSR PDR

Functional Baseline Allocated Bas6line

Fig. 5-3 Software Requirements Analysis

is to determine whether the contractor is sizing estimates. The Program Manager must
ready to begin formal CSCI testing that can be ensure that all software requirements, as
witnessed by the government. A technical reflected in the software development
understanding must be reached on the infor- specifications, are traceable to the system
real test results, and on the validity and the specification and that the Software Develop-
degree of completeness of such documents as ment Plan is updated to identify the required
an operator's manual, a user's manual, and a resources, facilities, personnel, development
computer programmer's manual. schedule and milestones, and software tools.

The developer may also customize the techni-
5.4.1 Software Requirements Analysis ques, methodologies, standards and proce-

dures to be used in software development.
The first step in the software development
cycle is the Software Requirements Analysis The outputs of the Software Requirements
(Figure 5-3). The purpose of the Software Analysis are final versions of the software
Requirements Analysis is to establish specifications, and an updated Software
detailed functional, performance, interface, Development Plan. These documents will be
and qualification requirements for each CSCI reviewed at the SSR. The Computer Resour-

5-6

Chapter 5 Software Development Process

ces Life Cycle Management Plan (CRLCMP) the software specifications can be traced
may also be updated. down to the software components of each

CSCI. In effect the early work on preliminary
5.4.2 Preliminary Design design can be used to validate the allocated

baseline. The software design is reflected in
After the software allocated baseline is estab- the preliminary Software Design Document
lished, the developer has traditionally (SDD) and Interface Design Document
proceeded into the Software Preliminary (IDD). These documents will describe the
Design as shown in Figure 5-4. Preliminary system architecture, memory and processing
design activity determines the overall struc- time allocations, interrupt requirements,
ture of the software to be built. Based on the timing and sequencing considerations, and
requirements, the developer may partition input/output constraints for each software
the software into components and define the component. The developer should also
function of each component and the relation- generate a Software Test Plan (STP) outlining
ships between them. This is called functional the proposed test program and establishing
decomposition. Input and output relation- test requirements for software integration
ships with external devices (such as displays and testing.
and sensors) are refined according to the
hardware configuration and software struc- The outputs of the contractor's efforts are
ture. Timing and memory budgets for comn- preliminary versions of the software design
ponents are established so that the software documents and the Software Test Plan. These
requirements can be satisfied within the documents are reviewed during the PDR.
hardware constraints. If a technique such as Throughout the development effort, the
Object Oriented Design (OOD) is used, func- developer will conduct informal design
tional decomposition doesn't really apply. In- reviews, inspections, and walkthroughs to
stead objects and classes are established along evaluate the progress and correctness of the
with clear definition of data requirements. design for each software component. The
The developer should provide a preliminary results of these inspections will serve as the
design that insures that requirements from basis for material presented at the PI)R.

SOFTWARE Software Design Document (Prelim)PRELIMINARY Software Test Plan (Test Identification)

DESIGN Interface Design Document (Prelim)

PRELIMINARY
DETAILED

DESIGNDESIGN

"REVIEW

SSR PDR CDR

Allocated Baseline 1-.9 Developmental
Configuration

Fig. 5-4 Software Preliminary Design

5-7

Chapter 5 Software Development Process

5.4.3 Detailed Design guage should be clearly defined and the
reasons for the departure from the standard

The purpose of the Detailed Design (Figure justified. Any special conditions that must be
5-5) activity is to logically define aru complete followed when programming the component
a software design that satisfies the allocated should be similarly described and clearly
requirements. The level of design detail must documented [5]. These exceptions are nor-
be such that development of the computer mally addressed in the Software Develop-
program can be accomplished by someone ment Plan.
other than the original designer. Componeit
functions, inputs and outputs, plus any con- During the entire design and development
straints (such as memory size or response process the contractor should document the
time) should be defined. Logical, static, and development of each unit, component, and
dynamic relationships among the components CSCI in software development folders
should be specified and the component and (SDFs). A separate SDF should be main-
system integration test procedures generated. tained for each division or breakdown of the

software. These divisions or breakdowns are
A complete detailed design includes not only determined by the particular design
a description of the computer processes to be methodology used. The SDFs are normally
performed but also detailed descriptions of maintained for the duration of the contract
the data to be processed. A data dictionary is and made available for government review
an effective way of documenting this needed upon request. A set of SDFs may include the
design information. For software that proces- following information:
ses or manipulates a large amount of interre-
lated data, the structure of the data itself (a) Design considerations and constraints;
should be defined.

(b) Design documentation and data;
Components which must be coded in assemb-
ly language or another "non-standard' Ian- (c) Schedule anc; status information;

SOFTWARlE Software Design Document (Detailed Design)
DETAILED Software Test Dtscription (Cases)

DESIGN Interface Design Document

CRITICAL
CRITIGN IICODING AND CSU

DESIGNTESTING

REVIEW -

PDR CDR

Developmental PCA
SDConfiguralion

Fig. 5-5 Software D)etailed Design

5.8

Chapter 5 Software Development Process

(d) Test requirements and responsibilities; presented in the design specification,
programming of each unit is accomplished by

(e) Test cases, procedures and results, the assigned programmer in the specified
programming language, usually Ada. As the

The contractor documents and implements programming of each unit is completed, the
procedures for establishing and maintaining programmer examines the program for er-
SDFs in a Software Development Library. rors. The program may be compiled when the
The library is a management tool used by the programmer is satisfied that the source pro-
contractor ýo assist in developmental con- gram correctly implements the detailed
figuration management. It serves as a "storage design. Compiling translates the source pro-
house" to control access of software, gram to its machine executable form, the ob-
documentation, and associated tools and pro- ject program.

CODING

CSU TESTING

', ' SOURCE CODE....,(S CD CSC INTEGRATION
LTG/

& TESTING
t "-.. LISTINGS .

CDR

Developmental Configuration

Fig. 5-6 Coding and CSU Testing

cedures used to facilitate the orderly develop- If the detailed design is in error, is ambiguous,
ment and subsequent support of software [6]. or is not sufficiently complete to permit the

programming to continue without further
A CDR (or a series of smaller CDRs) is con- definition, the programmer should consult
ducted at the conclusion of the detailed the original designer. The resolution should
design. The CDR should assure that the be documented, and all affected require-
software design satisfies the requirements of ments, design, and test documentation up-
both the system level specification and the dated accordingly.
software development specifications.

The purpose of the unit testing activity is to
5.4.4 Coding and CSU Testing eliminate any errors that may exist in the units

as they are p1 ogrammed. These errors may be
The purpose of programming is to transla,,L due to programmer mistakes or deficiencies
the detailed software design into a program- in the software requirements and design
ming language such as Ada. It is during the documentation. Usually, the test of a unit is
programming activity that listings of the the responsibility of the programmer who
source program are generated (Figure 5-6). programmed the unit. Unit testing is the ac-
Based on the detailed software design tivity that permits the most control over test

5-9

Chapter 5 Software Development Process

conditions and visibility into software be- integration is done in a phased manner with
havior. An efficient software development only a few components being combined at
effort requires rigorous unit level test to first, additional ones added after the initial
detect most errors before CSC Integration combination has been tested, and the process
and Test. repeated until all components have been in-

tegrated. The phasing of this integration
Besides producing the source and object code should be based on the functional capabilities
and their listings, the contractor develops and that can be demonstrated by specific groups.
records in software development folders the There may be some overlap with the previous
informal test procedures for each unit test as step since some components may be ready for
well as the test results. The contractor will integration while others are still being coded.
usually conduct informal code inspections or Most testing performed during Coding and
walkthroughs on each coded unit and corn- CSU Testing, and CSC Integration and Test.-
ponent during several stages of its develop- ing is called "informal testing". This term
ment. There are no formal reviews scheduled doesn't imply that the testing is "casual" or
during this step of the development cycle. "haphazard", but instead implies that the test-

ing doesn't require government approval.
5.4.5 CSC Integration and Testing Some formal testing may be accomplished

during these steps, but most formal testing is
Once the software is coded and each unit and usually accomplished during the next step.
component tested for compliance with its
design requirements, the contractor should 5.4.6 CSCI Testing
begin CSC Integration and Testing as il-
lustrated in Figure 5-7. The purpose of CSC After completion of a successful TRR, the
Integration and Testing is to combine the contractor will proceed with CSCI Testing
software units and components that have (Figure 5-8), the last step of the software
been independently tested into the total development cycle. The purpose is to per-
software product and to demonstrate that th- form formal tests, in accordance with the
combination fulfills the system design. The software test plans and procedures, on each

CSC INTEGRATION Software Test Descriptions

& (Procedures)

TESTING

TEST CSCI

READINESS

REVIEW TESTING

TRR

Fig. 5-7 CSC Integration and Testing

5-t1)

Chapter 5 Software Development Process

CSCI and to establish the software Product results and reviewing the operational and sup-
Baseline. Testing during this step is intended port documentation. The PCA is the formal
to show that the software satisfies the technical examination ofthe as-built software
Software Requirements Specification and the product against its design. This includes the
Interface Requirements Specification. product specification and the as-coded

documentation.
Throughout CSCI testing, the contractor
should be updating all previous software The typical outputs of the contractor's efforts
documentation, analyzing test data, generat- in CSCI Testing are the Software Test Report
ing the Software Test Reports (STR), and (STR), operational and support documenta-
finalizing the Software Product Specification tion such as the Computer System Operator's
"(SPS) (C-5 Specification). This will be the Manual (CSOM), the Software Users Manual
basis for the software Product Baseline nor- (SUM), the Software Programmer's Manual
mally established at the PCA, which may im- (SPM), the Firmware Support Manual
mediately follow, or be conducted (FSM), the Computer Resources Integrated
concurrently with, the FCA for a software Support Document (CRISD), the Version
only development. Normally, the PCA occurs Description Document (VDD), and the
after the software is released for integration Software Product Specification (SPS). Except
and testing with the system following the for updates and/or revisions, all deliverable
software FCA as illustrated in Figure 5-8. documentation should be completed at this
During the software FCA the government time. Appendix H contains a listing of the
verifies that the CSCIs perform in accordance standardized software documentation,
with their respective requirements and inter- defined in DOD-STD-2167A, that may be
face specifications by examining the test required for software development programs.

Software Test Reports

Computer System Operator's Manual
Software User's Manual

OSCI Software Programmer's Manual

Firmware Support Manual
REQUIREMENTS Computer Resources Integrated Support Document

TESTING Software Product Specification

Source Code Listing

Software Design Document

Version Description Document

FUNCTIONAL/
"'PYIASYSTEM INTEGRATIONPHYSICAL } •

CONFIGURATION AND TESTING

AUDITS

TRR FCA/PCA FQR

Developmental Product
Configuration , Baseline

Fig. 5-8 CSCI Testing

5-11

Chapter 5 Software Development Process

5.5 SYSTEM INTEGRATION & TESTING stipulated in the contract will be delivered to
the government who will then assume con-

The purpose of System Integration and Test- figuration control responsibility. The contrac-
ing is to ensure that the developed software tor, however, will be available to support the
works with the system in the environment that government's test and evaluation efforts and
it was designed for (Figure 5-9). The system to conduct any required acceptance tests.
is turned over to the government after an
acceptable Formal Qualification Review 5.6 TAILORING
(FOR). The FOR is a system-level review that
verifies that the actual system performance The purpose of tailoring is to reduce the over-
complies with the system requirements. For all costs of an acquisition, primarily by reduc-
computer resources, it addresses the aspects ing the amount and type of documentation
of the software and hardware performance being delivered by the contractor and by
that have been tested after the FCA and PCA. eliminating redundant or unnecessary testing

SYSTEM

INTEGRATION

TESTING

Formal TESTING PRODUCTION

Qualification & &

Review EVALUATION SUPPORT

FCA PCA FQR

Developmental Product
Configuration Baseline

Fig. 5-9 Systems Integration and Test

A successful FOR is predicated on a deter- or procedures. Some questions whose
mination that the system meets tie specified answers will provide tailoring guidance are:
rcquiremients in the hardware, software and
interface specifications. (a) Is all of the documentation described in

IDOD-S'I)-2 167A necessary?
The contractor's role will diminish sig-
nificantly subsequent to the FOR. Contractor (b) What documentation is already available
configuration control of tile software should even if il a different format?
terminate once the product baseline is ap-
proved and the government assumes resp)on- (c) Is it cost-effective to modify it'?
sibility. All updated docu menCItation, source
and object code listings, and all othler items (d) Is the contractor's format acceptable?

5-12

Chapter 5 Software Development Process

(e) How many copies are actually needed? mance, test, documentation) is required in
order to properly tailor the standards and

(f) How can DOD-STD-2167A be tailored? specifications.

(g) Is a formal design review necessary for The first step is to ask if the requirement is
each CSCI? appropriate? If not, then tailor it out through

the SOW. If the requirement is appropriate,
(Ih) How should they be scheduled? then ask if the requirement is adequate? If it

is, then impose the requirement through the
DOD-STD-2167A should be tailored by SOW. If the requirement is not adequate, ask
deleting non-applicable requirements. How if the requirement is too restrictive or too
does a program manager determine which flexible? If it's too restrictive, delete it or
requirements are not applicable? Figure 5-10 modify it in the SOW. If it's too flexible, add
illustrates the tailoring process. to or modify the requirement in the SOW.

Use careful judgment when tailoring a pro-
Most tailoring is implemented through the gram. Don't arbitrarily tailor areas simply to
statementofwork (SOW). A thorough under- reduce program costs. In the long run, this
standing of requirements (functional, perfor- may'increase life cycle costs.

Is the .N•- "

No TAILOR OUT
Requirement

Appropriate? \ THROUGH SOW

Yes
...

Is the Yes TASK REQUIREMENT

R m THROUGH SOW
Adequate?

Too Restrictive ELIMINATE OR MODIFY

(.... REQUIREMENTS

Is the
Requirement-, THROUGH SOW

Too Restrictive

or Too Flexible?

Too Flexible ADD OR QUALIFY

REQUIREMENTS

THROUGH SOW -

Fig. 5-10 Tailoring Process

5-13

Chapter 5 Software Development Process

5.7 SUMMARY Program Manager to insure proper integra-
tion of the two through carefully planned

Software that is part of a weapon system is reviews and audits. The talents of an inde-
managed by partitioning into CSCIs. Each pendent verification and validation (IV&V)
CSCI is managed individually and follows its activity may be used to aid in this process.
own software development cycle. Software
development activities can be broken down 5.8 REFERENCES
into six steps; any of which can be repeated as
many times as necessary during the develop- 1. Fairley, Richard E., Software Engineering
ment cycle. These six steps are Software Re- Concepts, Tyngsboro, Mass: McGraw Hill
quirements Analysis, Preliminary Design, Book Co., 1985.
Detailed Design, Coding and CSU Testing,
CSC Integration and Testing, and CSCI Test- 2. Boehm, Barry, "Software Engineering
ing. These steps typically occur (luring the Education: Some Industry Needs," in Software
Full Scale Development Phase. Engineering Education: Needy and Objectives,

Edited by P. Freeman and A. Wasserman,
DOD-STD-2167A is the approved standard Springer-Verlag, Berlin 1976.
to be used by DOD agencies for software
development. It is to be used in conjunction 3 DOD-STD-2167A, Defense System
with DOD-STD-2168, Software Quality Pro- Software Development, 29 February 1988.
grain Plan. These two standards are not in-
tended to discourage the use of any particular 4. DOD Directive 5000.29, Management of
software development method, but instead, to Computer Resources in major defense Systems,
aid the Program Manager in developing and 26 April 1976.
maintaining quality software. They should be
used throughout the acquisition life cycle and 5. Rubey, Raymond J., A Guide to the
tailored according to system needs. Management of Software in Weapon Systems,

2nd Edition, March 1985.
It is especially important to develop the
product as a system. Never lose sight of the 6. Ferens, Daniel V., Mission Critical Coin-
fact that hardware and software development puter Resources Software Support Manage-
are intimately related. Although they are ment, Air Force institute of Technology,
developed in parallel, software is almost al- Wright-Patterson AFB, Ohio, First Edition,
ways in the critical path and it is up to the May 1987.

5-14

Chapter 6 Software Test and Evaluation

CHAPTER 6

SOFTWARE TEST AND EVALUATION

Software test and evaluation are two of the The TEMP addresses two types of computer
most difficult, frustrating, and expensive ac- resources: system support and embedded
tivities that are performed during system computer resources.
development. Unfortunately, they may also
be the most misunderstood functions of the 6.1.1 System Support Computer Resources
entire system acquisition cycle. Before dis-
cussing the details of software testing, let us System support computer resources include
review the software development life cycle all the government and contractor planned
and see how the software test process fits in. software and computer resources, required to

fully test the overall system. These test
6.1 TEST PLANNING resources include [1]:

Test and Evaluation (T&E) planning is in- Test Support Equipment - All unique or
itiated at the inception of the development modified test support equipment required to
process. During the Concept Exploration conduct the planned test program including
(CE) Phase the initial draft of the Test and any special calibration and software require-
Evaluation Master Plan (TEMP) is ments.
developed. The TEMP is the basic planning
document for all T&E related to a particular Threat Systems - All threat simulators against
system acquisition and is used by the Office of which the system will be tested including the
the Secretary of Defense (OSD) and all DOD number and timing requirements.
components in planning, reviewing, and ap-
proving all T&E activities. The TEMP Simulators, Models, and Testbeds - All sys-
provides the oasis and authority for all other tem simulations required including com-
detailed T&E planning documents. puter-driven simulation models and

6-1

Chapter 6 Software Test and Evaluation

hardware-in-the-loop testbeds identified by approved, the preliminary software design is
specific test phase. initiated (Figure 6-1). Preliminary design is

the development of an overall skeletal struc-
Special Requirements - All non-instrumenta- ture or architecture for the software. The
tion capabilities and resources required such overall structure is defined to include such
as special data processing or databases.

For all of these test resources the system re- SOFTWARE

quirements are compared with existing and REQMTS

programmed capabilities in order to identify SPEC

any major shortfalls. (SRS) P!

6.1.2 Mission Critical Computer Resources 7 lE

The initial draft of tile TEMP will include a
preliminary Software Test and Evaluation
Plan in Part III. This plan describes the an- .&.AVION.

ticipated software testing necessary to
demonstrate the ability of the mission critical

golI ENSIV ý 7.computer resources to achieve the system ob- OFFENSIVE ENSIVE

jectives.. Detailed information on the TEMP
may be found in DOD Directive 5000.3-M-3, Fig. 6-1 Preliminary Design
Test and Evaluation Master Plan (TEMP)
Guidelines, 26 Jan 1990. things as the types, names and number of

software modules; their calling sequence and

During the Demonstration/Validation (D/V) their input and output parameters; their ap-
Phase, the TEMP is updated to reflect further proximate execution times; and other per-
refinements in tile objectives and evaluation tinent relationships that should exist between
criteria of the weapon system computer tile various modules. Since Ada modules and
resources and to include plans for Develop- packages can be compiled without the re-
mental Test and Evaluation (DT&E) and quirement that lower level code be available,
Operational Test and Evaluation (OT&E). preliminary design using an Ada-based Pro-
As part of contractor involvement, a Software gram Design Language (PDL) is very valu-
Development Plan (SDP) is generated along able. Please note that, if a technique such as
with a Software Test Plan (STP). The contrac- Object Oriented Design is used, the proce-
tor developed STP must reflect the overall dure just described may not really apply. In-
Software Test and Evaluation Plan as stated stead objects and classes are established along
in the TEMP. Along with the SDP, they be- with a clear definition of data requirements.
come the basic documents governing the con-
duct of the mission critical computer Official government approval will be
resources development and test activities, provided once a preliminary design has been

completed and a Preliminary Design Review
Once the Software Requirements Specifica- (PDR) has been held. Tile PDR should be

tion (SRS) and the Interface Requirements approached with care and preparation since
Specification (IRS) have been generated and its completion is a signal to tile contractor to

proceed with the detailed design.

6-2

Chapter 6 Software Test and Evaluation

During the detailed design (Figure 6-2), the group computer software component (CSC)
overall architecture developed during the testing can start. This testing is usually infor-
preliminary design is fleshed out with detailed mal in nature and is usually performed by the
algorithms and logic implementation details, programmer. Formalized testing, as
Figure 6-2 shows the detail process and data described in the Software Development Plan
flow of a typical task using Buhr structure and the Software Test Plan, can begin after
graphs [2]. In the past, pseudo-code (English- the completion of coding and informal
like programming statements) and traditional programmer testing. The contractor can con-
flowcharts were often used in this phase. duct his own formalized testing but anyformal
DOD policy, however, now requires that the testing which is to be witnessed by the govern-
detailed design also be developed using Ada ment, doesn't begin until a formal Test Readi-

Interrupt Result Status

It, 7. EVENTDECODER

"----- ---

YAW CONTROL / RO L CONTRO 1
Interrupt .Interrupt

-DON ----- -
Command 0

COMMAND RECOGNIZER - 1- E COMMAND PROCESSOR

SResult S

Fig. 6-2 Detailed Design

or an Ada based PDL. Once again, use of Ada ness Review (TRR) has been conducted. The
as a design language will be immensely useful purpose of the TRR is to determine whether
because the actual coding of the detailed the contractor has completed his own testing
design will be a natural follow-on to the and has tile resources and the plans and pro-
detailed design. During both the preliminary cedures to formally demonstrate to the
and detailed design phases, software practices l WARNIN(i

such as inspections and walk-throughs (which ,,. -W A INN, ; SR

will be discussed in detail later in this chapter) entry AIt ,,_,IN _SFPNSO,,

will be immensely useful in finding errors or en r WARI'OF

inconsistencies in the overall system design.

Coding initiates the process of building sub- 'mk REC'"DN•i "

modules. These sub-moduIles are progres- entry I.IXi_1IATUS (F_S t.NSOR: in St:NSOR VAI.Ijtlt;

sively combined with other sub-nmodules to writ ^*I tV I in SIiNSORVAI.UI;

form larger and more complex modules and end Rwr•Ii ' r1A*,: in SINS0Rs-rYA ,:

blocks of software (Figure 6-3). With each ______._,.,,__,___.
submodule or unit coded, individual and Fig. 6-3 Coding

6-3

Chapter 6 Software Test and Evaluation

government that thle software works as an IU FSM CD X
entity.L] LI]LMM LcjH

Data1 Suss

Software integration testing exercises a single__I
Computer Software Configuration Item PERIPHERALS] ...(CSCI). This type of testing usually requires LJ I--

CSCam
a dedicated mainframe computer since other MUTER

software or subsystem simulations will have to 7TEST L•GHTCMPUTER

be used (Figure 6-4). The actual hardware .L.N __

typically is not available at this time and a
simulation or emulation is substituted. The OPERATORS

target computer simulation is called an inter- cONRLE MAINFRAME

pretive computer simulation (ICS). One of
the primary purposes of this detailed software Fig. 6-5 tot Bench Integration
system testing is to ensure that the software is laboratory environment can only ap-
inherently sound and that it demonstrates the proximate the real world so a laboratory is a

relatively artificial and benign environment.
HOST COMPUTER---. -•-- ... 2 '•••: In spite of this, hot bench testing is the key to

DATA proving that the hardware and software
SW - designs satisfy system requirements.

- -System DT&E and OT&E can begin once hot
TE .. .]bench testing is successfully completed (Fig-

i [L. ure 6-6). Although the two tests are some-
times combined because of schedule

OMUE '-:'] "!.•• \4 constraints, the objectives of the tests are dif-
TA .RGET OPERATOR'S TEST ferent and the kinds and amount of data re-

CSMUTEO CONSOLE quired by each is different. Usually the level
of detail required for DT&E is much more

Fig. 6-4 Software Integration Testing than that required for OT&E. This means that

potential for performing its function once it is the hardware and software testing required
married to the system hardware in a test setup
called a hot bench.

Hot bench integration or testing is perhaps
one of the most frustrating parts of software
T&E (Figure 6-5). Once the software is mar- 'IV
ried to the actual hardware, the difficult part /
begins. The first step is to establish a hot- A

bench or Systems Integration Lab (SIL), as it .
is sonetimes called. The next step is to popu- RAPA -Lh .
late the SIL with actual black boxes, cable

runs, power supplies, displays and system SAM, TESTCENTER

computers, configured as closely as possible
to the final article. Unfortunately, a Fig. 6-6 DT&E/OT&E Testing

0-4

Chapter 6 Software Test and Evaluation

for DT&E is usually more stringent and more (b) The amount of paperwork and the amount
extensive than that required for OT&E. of detail to be examined is much less. Top-

level design requirements, interfaces, and test
6.2 COST OF SOFTWARE FIXES requirements are being examined without

regard to implementation details.
Before discussing the details of software test-
ing, it would be instructive to examine the cost (c) Errors introduced at the top level, such as
of removing errors from software. Figure 6-7 in the requirements or overall system design,
shows the cost of a typical software develop- will be propagated manifold into the detailed
ment project broken down by the various design and coding of the discrete software
phases of development [3]. The cost of finding components.
and correcting a software problem in the early
phases is insignificant when compared to the (d) Software programmers seem to undergo a
cost of finding and correcting the same prob- psychological change once code has been
lem once the software has been delivered, generated and computer based testing has
Although these are not absolute numbers that begun [4]. They seem to be less sensitive
apply all development projects, the message about their mistakes when dealing with re-

is clear; "Spend more time up front finding quirements and design considerations than
errors and you will reduce your overall cost." they are about errors in coding.

A question that may be asked is, "Why does it (e) Major resources are tied up in testing once
cost so much less to find and correct errors in computer based testing begins. Mainframe
the earlier stages of software development computers, weapon system hardware, tech-

than it does after system delivery?" Several nicians, and system analysts can escalate cost
reasons that have been put forth: very quickly. Once a problem is found there is

tremendous psychological pressure to correct
(a) At the beginning the pressure is less in- it as soon as possible. Unfortunately, the

tense. Since there is little or no code to ex- amount of paperwork involved in the correc-
amine, there is more time to look for the tion procedure is immense and the impact of
problem. one software error usually propagates

ERRORS ERRORS RELATIVE

SOFTWARE DEVELOPMENT DEV $ INTRODUCED FOUND COST OF ERRORS

REQUIREMENTS ANALYSIS 5% 55% 18% 1.0

DESIGN 25% 30% 10% 1-1.5

CODE & UNIT TEST 10%

INTEGRATION & TEST 50% 10% 50% 1.5- 5.0

VALIDATION & DOCUMENTATION 10%

OPERATIONS & MAINTENANCE 5% 22% 10- 100

Fig. 6-7 Costs of Software Fixes

6-5

Chapter 6 Software Test and Evaluation

throughout other modules. Corrections are software development when errors are the
not always complete or totally accurate [4]. least expensive to fix. The conclusion is very

obvious: if more time and effort are put into
In summary, it is very clear that the greatest requirements definition and design, fewer
return on the dollars invested in finding and mistakeswill be made and those that are made
correcting software problems occur during will be cheaper to correct. The more you pay
the early stages of software development: the now, the less that you will pay later.
requirements and design phases.

6.4 TYPES OF TESTING
6.3 SOURCES OF SOFTWARE ERRORS

Software testing can be broken up into three
If one examines where the typical software general categories: human testing, software
errors occur, it is somewhat surprising to learn only testing, and integration testing.
that they also occur mostly in the early stages
of software development. As can be seen 6.4.1 Human Testing
from Figure 6-8, about 40% of all software
errors are attributed to problems in specifica- Human testing is defined as an informal, non-
tion. Twenty-eight percent are due to incom- computer-based method of examining com-
plete or erroneous specifications and 12% are puter program architectures, designs and
due to intentional deviations from the internal and external interfaces for the ex-
specification. Violations of programming press purpose of determining how well they
standards contribute another 10%. Errors reflect overall system requirements [4].
due to coding and programming mistakes Hluman testing is comprised of inspections,
(i.e., erroneous data accessing, erroneous walk-throughs, desk checking, peer ratings,
logic, erroneous computations, improper in- and design reviews.
terrupts, wrong constants and data values)
comprise only about 38% of all errors [5]. 6.4.1.1 Inspections
Comparison of this figure with the previous
figure is very revealing. It tells us that the bulk During an inspection, the programmer ex-
of the errors occur during those phases of plains to a group of three or four peers the

overall approach, rationale, choice of algo-

CATEGORY PERCENTAGE rithms, logic, and overall module structure of
the program. The purpose is to ensure cor-

INCOMPLETE/ERRONEOUS SPEC 28 rectness and consistency in structure, coding
INTENTIONAL DEVIATION FROM SPEC 12 conventions such as variable definitions and
VIOLATION OF PROGRAMMING STDS 10 use, programming standards and procedures,
ERRONEOUS LOACC G 12 and overall unity of design. At the end of theERRONEOUS LOGIC 12

ERRONEOUS COMPUTATIONS 9 inspection, which usually lasts about two
INVALID TESTING 4 hours, all errors, inconsistencies, and orlis-
IMPROPER INTERRUPTS 4 sions are listed and given to the programmer
WRONG CONSTANTS/DATA VALUES 3 for correction. Under no circumstances is the
DOCUMENTATION 8 list of errors ever allowed to be reviewed by

TOTAL 100 the programmer's supervis . or anyone else.
I__ The purpose of the inspection is to improve

Fig. 6-8 Sources of Software Errors the final product in a non-threatening en-

6-6

Chapter 6 Sottware Test and Evaluation

vironment and not to appraise the very beneficial in improving commonality,
programmer's performance. Statistics are overall consistency, and program integrity.
also collected in order determine the quality
of the product and the progress being made in There are other benefits to inspections, walk-
the development process. throughs, and peer ratings beside the obvious

one of finding errors and inconsistencies. The
6.4.1.2 Walk-throughs participants themselves benefit because they

are exposed to other programming styles and
During a walk-through, the group of three or new techniques which they may want to adapt
four peers come prepared with test cases so for their own use.
that they can "play computer" and mentally
step through the design and the logic flow. As 6.4.1.5 Design Rev;ews
is done in inspections, all errors, inconsisten-
cies, and omissions are summarized and given PDRs and CDRs are not normally considered
to the programmer for correction. The results by the government as part of the test process.
are also confidential and are never seen by This is unfortunate because, to the contractor,
anyone outside the group, including the completion of the PDR is a signal that the
programmer's supervisor. The climax of both preliminary design is acceptable and that he
inspections and walk-throughs is a meeting of can proceed with the detailed design.
the minds between all the participants [4]. Likewise, completion of the CDR is the
Statistics may once again be gathered. contractor's signal that the detailed design is

acceptable. Vc ry often the government fails
6.4.1.3 Desk Checking to perform a thorough review of all the

documentation submitted prior to either the
Desk checking is the least productive of all PDR or the CDR. PDRs and CDRs may be
human testing since it involves the program- conducted superficially and the contractors
mer sitting at his desk and reviewing his work. may proceed into detailed design without a
It is human nature to miss errors that one has thorough review of the overall design and
committed. Desk checking, however, can be without assurances that overall system re-
performed individually at any time and quirements are reflected in the design.
without the need for convening a meeting
with other individuals. It is better than doing There is no immediate solution to this prob-
nothing at all. lenl since it is often due to the lack of adequate

manpower. Documentation review prior to
6.4.1.4 Peer Ratings design reviews may always be inadequate. Al-

ternatives are to thoroughly review only criti-
Peer ratings involve a group of programmers cal portions of the design, thoroughly review
reviewing each other's work. Each program- only the module interfaces, or augment thle
mer anonymously submits one or twe engineering staff with outside help. If the
modules for review. The peer group reviews funding is available, an Independent Verifica-
each module and rates the overall quality tionand Validation (IV&V) contractorcan be
while suggesting improvements. Results are used. Outside consultants can be brought in,
tabulated and passed around. Like inspec- or heip can be sought from the various
tions and walk-throughs, peer reviews are military labs or software support agencies.

6-7

Chapter 6 Software Test nnd Evaluation

Anothersolution is to hold incremental PDRs In summary, human testing provides the
and CDRs. By spreading out the reviews the highest return on your investment of valuable
available staff can pay more attention to software test and evaluation dollars.
details. This, of course, has to be weighed
against overall schedule slippage. One must 6.4.2 Software Only Testing
remember, however, that an incompletely
reviewed software design is guaranteed to in- Software only testing is defined as that testing
troduce schedule slippage anyway. As the that is performed solely for the purpose of
commercial states, "You can pay me now, or determining the integrity of the software
you can pay me later." when it is tested as an entity. In other words,

one wants the assurance that the software
6.4.1.6 Benefits of Human Testing works before it is married to the hardware.

The reason for this is that software is usually
Human testing is a very productive undertak- integrated with newly developed hardware
ing. In his book, The Art of Software Testing, which has its own maturation problems. In-
Myers [3] discusses the following positive tegrating untested software with unproven
qualities of human testing: hardware makes it very difficult to determine

where the problems lie: hardware or software.
(a) Experience has shown that it is quite effec-
tive in finding errors and it should be used on 6.4.2.1 Black Box or Functional Testing
every programming effort;

Black box testing entails testing a particular
(b) Since it is usually applied between the start software unit without any knowledge about
of design and the beginning of computer the internal structure or logic of that unit
based testing, it substantially contributes to (Figure 6-9). Various test cases are generated
productivity and reliability; based on the specification and the require-

ments of the unit. The correctness of the
(c) It may find 30 to 70% of design and coding software unit is determined only by the output
errors; data generated in response to the input data.

This is done by designing the test cases with
(d) There is a higher probability of proper two types of input data. The first type of input
error correction since they are found early in data falls within the boundaries expected by
the development phase. Programmers tend the software unit and the second type of data
to make more errors correcting errors found falls outside these boundaries. The reason for
during computer-based software testing;

(e) It finds errors in clusters or batches as 1INPUT • l •P OUTPUT

opposed to computer-based testing which DATA DATA
finds errors one at a time; *I

(f) It lowers the, cost of software testing since
the costs involved are a few programmer's
man-hours as opposed to the computer
resources and the large number of personnel
involved in computer-based testing. Fig. 6-9 Black Box or Functional Testing

6-8

Chapter 6 Software Test and Evaluation

the latter is that oftentimes it is those specification. How reasonable the assurances
parameters (i.e., invalid) that do not fall are is a simple matter of economics, how
within the expected limits that cause the big- much can one afford to test?
gest problems. It is an old dictum in software
development that ensuring that the software 6.4.2.2 White Box or Structural Testing
doesn't do the unexpected is as important as
ensuring that it does what it is supposed to do. Unlike black box testing, white box testing is

concerned with the internal structure and
The primary objective of software testing is to logic of the software unit. The test cases are
demonstrate performance and reliability, generated using a listing of the code as op-
Often it is useful, if not essential, to approach posed to the requirements specification (Fig-
software testing (particularly at the lower ure 6-10). Generation of the input data,
levels) with the attitude of "Let's try to break however, is very similar to the generation of
it." This is to demonstrate the ability of the input data for black box testing. Both valid
software to recover from abnormal events or and invalid input data are generated for the
to degrade in a graceful or controlled manner, test cases and the output data is analyzed to
Since complete and exhaustive testing of any determine the correctness of the computer
practical size software is impossible, one must code. Exhaustive white box testing is also
develop an acceptable level of maturity in the prohibitive for the same reasons that exhaus-
software. This is often measured by the num- tive black box testing is impossible.
ber of faults that are occurring during test. As
software matures, the number of faults dis- Exhaustive white box testing, however, does
covered decreases and, as a minimum, the have another dimension other than all the
software becomes controllable (i.e., the con- possible valid and invalid input parameters.
figuration is stable). Since the tester has knowledge of the internal

logic and program structure, a goal would be
The reason that exhaustive testing of software to test all possible logic paths that exist within
is a practical impossibility is that the number the code. Although all paths can be executed,
of valid and invalid test cases is infinite. For it is impossible to test all combinations. As an
example, if a certain input parameter should example, consider the logic flow of Figure
fall within the values of I and 10, truly exhaus- 6-11 which shows a simple logic sequence that
tive testing would test all the Values between
1 and 10. This is clearly an impossibility since I

there are an infinite number of valid values INPUT DTA
between these two limits. Likewise, exhaus- ,ADATATA
tive testing of all invalid p-rameters is also
impossible because these are also infinite.

To summarize, software of any practical size ~
can never be exhaustively tested and can /
never be guaranteed to be totally error free. I
Because of this, the goal of software testing is
to demonstrate a certain level of performance :
so that there are reasonable assurances that LISTING

the software performs according to the Fig. 6-10 White Box or Structural Testing

6-9

Chapter 6 Software Test and Evaluation

contains two loops that execute up to l2 times. "drivers" (Figure 6-12). These drivers are
This sequence contains 10 raised to the 20th coded and used for the specific module test
power different finite paths. If one could test and then replaced when the next higher level
one logical path every nanosecond (trillionth module is coded and integrated.
of a second), it would take 4000 years to test
all the different paths. Using a real example, Top-down testing begins by testing the
it would take over 60,000 years to perform a highest level module first and then progres-
similar type of exhaustive test on the Titan III sively integrating and testing lower level
missile guidance software.

DRIVER

The goal of white box testing then is also to
minimize the number of errors in the [..1
deliverA code and to provide reasonable as- D I [MOULE

surances that the software performs accord-].MODULE
ing to the specification. . i _

6.4.2.3 Top-Down/Bottom-Up Testing MODULE MMODULEj

In actual practice the best course of action is Fig. 6-12 Bottom-Up Testing
to develop a software test strategy that incor- modules. A higher level module requiring
porates both black box and white box testing lower level modules uses dummy modules
philosophy. Test procedures, therefore, that are called "stubs" (Figure 6-13). The stub
should make use of both the specifications may be as simple as sending a message such as
and the existing listing. Regardless of what 'This stub is a replacement for the sorting
test philosophy is used, the choice remains module" or as complicated as performing
whether to perform bottom-up testing or top- dummy commands to simulate actual process-
down testing. ing times.

Bottom-up testing begins with the lowest level There are benefits and problems associated
module or unit (i.e., one that does not call any with both approach(:s. In the bottom-up ap-
other module or unit) and tests them through
the use of dummy modules or units called EXEC-.

LOGICALI
12 TIMES 12 TIMES M UF j io i STUB

d STUB

_, IA .I. . Fig. 6-13 Top-Down Testing
"proach a substantial amount of time is spent

... in designing, coding, and testing module

2 DIFFERENT PATHS drivers. Since these drivers will only be used
* 4000YEARSD 1 LOGICAL PATH PER NANOSECOND for testing, it is somewhat wasteful of a

programmer's time. In addition many sig-

Fig. 6-11 Software Complexity nificant timing problems may be masked and

6--10

Chapter 6 Software Test and Evaluation

not discovered until late in the test cycle when lower level tests. The main purpose of the
both schedules and resources are tight. On software system test is to ensure that the
the plus side, if the driver was properly coded software, meets the overall perfor-
designed, the next higher level module can be mance objectives of the software require-
tested with some assurances that the lower ments and system specifications. In other
level modules are correct, words, does the assembled software package

meet the overall system requirements?
In the top-down approach, there is a tendency
to code the easier modules first. Often com- In order to conduct software system tests, it is
plex and critical modules are not coded and necessary to use the target computer or to
tested until late in the test cycle because of the emulate/simulate it in the software worksta-
difficulty in predicting module complexity. tion or mainframe. One must also simulate
These modules may sometimes require more the rest of the hardware and the external en-
time and energy than was initially planned or vironment (Figure 6-14). In addition large
is currently available, On the plus side, once amounts of data may have to be generated and
a higher level module is coded and tested, it introduced into the software according to ap-
is repeatedly tested as more and more stubs proved test plans and procedures. Since the
are replaced by fully functioning modules. simulations required are sometimes exten-
This repeated testing will test the internal sive, the software tester must have assurances
consistency of each module and its interface that the simulations are correct. This may not
with the rest of the software. It will also reveal be simple. Lack of adequate simulations is a
major timing problems very early in the test major contributor to delays in software systeni
cycle while there are sufficient resources to testing. If the program is sharing computer
adequately solve major problems. This evolu- resources with other programs or organiza-
tionary approach helps to build up maturity tions, allocation of computer time and
and confidence in the software. priorities must be carefully considered. Many

programs have been delayed by too many or-
In a manner analogous to black box and white ganizations vying for the same resources.
box testing, the testing philosophy should in-
corporate both top-down and bottom-up test- HOST COMPUTER

ing. The most complex and critical modules G__ 0l.
may be designed and coded from the bottom- DATA Jll

up and the rest of the system can be designed --
and tested from the top-down. The key is to
accurately determine the critical and complex TEST

modules; this is not always an easy task. MT

6.4.2.4 Software System Testing TES..sT

TARGET OPERATOR'S RC
COMPUTER CONSOLE

Integration and testing of the software as an SIMULATION

entity can begin once all the modules in the Fig. 6-14 Software System Testing
configuration item have been coded and in- P ig. 6 nstare Ssd Tecting
dividually tested by the programmer. When Purchasing, installing, and checking out
you test the software as a system, you are nt anot hermcomputerfsystcmptake s nta
trying to duplicate the results of the various leasing time on an off-site computer is not

6-11

Chapter 6 Software Test and Evaluation

only expensive but also slows down the turn- chasing ghosts, random malfunctions, and
around time. other elusive spirits.

6.4.3 Integration Testing Since this testing usually takes place towards
the end of Full Scale Development and coin-

Upon completion of software system testing, cides with the initial phase of Produc-
systems developers embark on perhaps the tion/Deployment, test personnel are vying for
most difficult, time-consuming and frustrat- resources with various other groups. This
ing part of integrated testing--hot bench test- means that the available black boxes are in
ing. demand by the production people, who are

attempting to build the systems, the Automat-
6.4.3.1 Hot Bench Testing ic Test Equipment (ATE) folks, who are

building the automated software to test these
If the system software works when tested as a black boxes, and the test personnel conduct-
CSCI, the next step is to marry it to actual ing quality, environmental and stress tests.
system hardware configured in a test setup
known as a hot bench (Figure 6-5). Other Obtaining these black boxes may become very
common names for the hot bench are systems difficult, and a lack of adequate backups for
integration lab (SIL) or systems integration failed components is a major contributor to
facility (SIF). The objective is to test the test delays. Because of the usually high cost
software in a laboratory environment which of these items, early planning for these assets
closely approximates the actual system to be will not solve all the availability problems.
fielded. The hot bench will include the black One may not be able to afford to buy more of
boxes, cable and wire runs, data busses, and the hardware required. A compromise is to
any ancillary equipment required to test the share the black boxes. Test schedules are
system (e.g., terminals, printers). often driven, not by the complexity of the

tests, but by the availability of resources.
Once you start testing the software with real Asset management is an important aspect of
hardware, you will discover that the real world any hot bench testing.
is a very "noisy" environment. Problems that
are due to external causes will be propagated Other factors which must be considered are
throughout tie hot bench. ['or example, a the facilities and the scheduling of these
large air conditioning compressor kicks in or facilities. To perform hot bench testing the
the heavily used copying machine next door facility must have adequate power and air
induce large transients into(your equiipment. conditioning to handle the anticipated power
Electrical transients in digital system can cre- and heat loads. TEMPEST requirements, as
ate unwelcome behavior. Sensitive instru- well as other security requirements, must be
ments are affected by stray radio frequency adhered to if the testing will generate or use
(RF) signals and computers do unpredictable classified data. All of this requires careful
things when the humidity climbs above a cer- planning since design and development
tiin threshold level. Couple this with tihe schedules may change and the facilities may
traditional difficulty encountered in deter- not be available when they are needed. In
mining whether a problem is caused by the addition, if the hot bench testing slips too
hardware or the software and one soon real- much, conflicts may arise with other programs
izes that an inordinate amount of time is spent which may have planned to use the same

0-12

Chapter 6 Software Test and Evaluation

facility space. It is a good idea to plan for these Data reduction can be a significant hot-
unexpected contingencies. tleneck. During any major field testing ac-

tivities, prodigious amounts of data can be
Many of these problems can be minimized if generated. Adequate computer resources
the test requirements and resources are ade- and sufficiently tested support software pack-
quately addressed in the TEMP and the ages are required. It is not uncommon towait
Software Test Plan. one or two weeks for data to be reduced and

presented in a format suitable for engineering
6.4.3.2 DT&E/OT&E Testing analysis. If in addition, you are required to

have organizations other than your own (i.e.,
The next phase of testing is by far the most another service facility) record data for your
expensive of all. It involves performing field test, additional bureaucratic delays can fur-
tests in an environmentclosely approximating ther add time to your test program.
the environment of the anticipated threat. If
flight testing is involved, one must include the Tie most important thing, however, is to real-
test aircraft, chase aircraft, test ranges, logis- ize that field testing should confirm hot bench
tics support for all the aircraft and test equip- results. If you're not ready, don't fly. If it
ment, large data reduction systems and doesn't completely work in the lab, don't
software and the hundreds of personnel re- waste program resources using the field as a
quired to conduct and coordinate the various laboratory.
tests (Figure 6-6). Clearly hundreds of
thousands to millions of dollars are tied tIp in 6.5 TEST TOOLS
field testing major systems.

It is an ironic fact that the very industry that
Logistic support for DT&E must also be has automated major segments of other in-
planned. Failure rates for electronic equip- dustries, has itself failed to automate. Thanks
ment must be anticipated and provisions to computers and software, robots and auto-
made for backups and repair of failed corn- mation are major players in such diverse in-
poients. Repairs may be done organically for dustries as automobile ma nu fact tiring,
OT&E but for I)T&E the repairs are utstially publishing, and textiles. When it comes to
performed by the contractor, software development, however, it is all vir-

tually manual labor. It still requires a person
Schedtiling of national assets such as the to translate a set of reqlUirements into a set of
China Lake Naval Weapons Center or the computer instructions. Computers that
Edwards Flight Test Center will have to be generate code directly from hutman languages
done years in advance when the crystal ball is are still far in the future.
pretty cloudy. Schedule uncertainties, unpre-
dictable weather and unforeseen technical This doesn't mean that there are no software
problems will force the test manager to con- development tools. Numerous tools exist
stantly generate contingency test plans to ac- and, although they all require extensive
commodate program requirements with htman participation, they are, nevertheless,
those of other legitimate DOD users reqtLir- very useful. Test tools can be classified into
ing the use of the same national assets. the following categories:

0-13

Chapter 6 Software Test and Evaluation

Requirements' Analysis Tools - These tools test run has uncovered errors. Methods for
provide the capability to incrementally state dcbugginrg include: brute force, induction,
system requlirements and to systematically deduction, backtracking, and testing [4].
check for consistency and completeness.

The brute force method, although requiring
Text Editors - Tools used to insert, delete, or little thought, is the most inefficient of all
Manipulate portions of any text such as debugging methods. This is because it usually
documentation, test data or code. takes the form of (1) memory dumps, (2) scat-

tering print statements in the code or (3) using
Test Generators - Allow test drivers to be automated debugging tools which require
developed in a systematic and standardized labor intensive analysis to trace the error.
fashion. Sometimes can be automatically
generated during the coding process. Debugging by induction requires careful

thought and follows the classical inductive
Static Analysis Tools - Perform a static method of examining the data, looking for
analysis of a l)articular program to produce a relationships, devising a hypothesis and prov-
listirig of questionable coding practices, ing the hypothesis by locating the error.
departures from programming and coding
standards, isolated code, symbol tables, etc. 1)cbugginrg by deductive reasoning proceeds

from general theories or premnises about the
i)ebugging Tools - On-line tools that enable cause of an error, eliminates and refines the
programmers to interact with their program premises, arrives at a conclusion and finds the
during program execution in order to assist error.
them in locating errors.

Backtracking involves starting at the point
Environmental Simulators - Allow for the where the incorrect result was produced and
simlIlation of a particular system environment reverse engineering the program to discover
when testing in the real environment is either the source of the error.
impractical or too exi cnsive.

l)ebugging by testing involves the generation
System Simulators - Simulations of other sys- of smnall samples of test data in an attempt to
temns which interact with the system under isolate the problem.
development or simulations of major subsys-
tems not yet available. Of all programming activities, debugging is

probably the most disliked. This is because
Data Reduction/Analysis Tools - Software debugging is a mentally taxing effort and quite
a'rid computer)packages that allow large often it is very damaging to sensitive egos that
volumes of data to be analyzed and reduced see programming errors as pe-sonal failures
to a format easily digestible by engineers and or indictments of their programming corn-
managers. petence. It can be very difficult because many

faults can be caused by errors in a program
6.6 I)EBIJGGING statement anywhere in the entire program.

Developme nts in the state-of-practice of
l)Cbugginlg is tile activity of fi ding and cor- software engineering are riuninmizing these
rectirig a known error. It is performed after a typec,; of errors.

0-14

Chapter 6 Software Test and Evaluation

There are certain debugging principles that software. This independence can be internal
have arisen out of the collective experience of or external to the contractor;
programming [4]. These are:

(c) As part of the evaluation process, insure
(a) Be careful when using debugging tools, that a good quality assurance organization is
They often introduce more problems then in place. Since software development is so
they solve and often require a non-trivial in- labor intensive, it is important that an or-
vestment of time in order to become profi- ganization exists to impose programming
cient with the tool; standards, procedures and regimentation on

the development process and to evaluate both
(b) Experience has shown that where there is the process and the product;
one bug, there are usually more because it has
been shown that errors tend to cluster; (d) Perhaps one of the most important things

to remember is that failure to impose strict
(c) The probability of a fix being correct is discipline into the software development
never 100%. Correction of an error often process is the quickest way to ensure disaster.
introduces additional errors requiring further This discipline must exist in the program of-
debugging; fice as well. The programn manager must be

absolutely resolute in insisting that a software
(d) It is always best to change the source code developer complete an activity before
and not the object code. Correcting the object proceeding to the next one. If the developer
code throws the source code and the object i,; not ready for a PDR or CDR, then res-
code out of sync and may produce disastrous chedule it. If they haven't finished software
results elsewhere in the program or later on testing, then don't proceed into hot bench
in the execution; integration.

6.7 MANAGEMENT GUIDANCE (e) The program office should have the even-
tual user, the supporting activity, and the

The following suggestions provide sonie IV&V contractor (if there is one) participate
general guidance during the planning and ex- in the thorough review of the Software Test
ecution of software test and evaluation. Plan. They should critically exami ne

whether:
(a) If an IV&V organization is going to be
used, bring them on board early, preferably - all test resources have been identified;
during the Concept Exploration phase. Just a
handful of people (2-3) performing an IV&V - all the test software tools are available, are
role can be invaluable, matured and currently in use;

(b) When evaluating contractors' proposals - the test schedule is adequate. Remember
and Software Development Plans make sure that software development is almost always
that somne organization other than the one on the critical path;
developing the software performs the testing.
The developing organization may develop - the developer really understands software
test plans, but it should not test its own testing principles;

6-15

Chapter 6 Software Test and Evaluation

- testing is complete and has demonstrated once, but eventually your test program is
operational performance and reliability, going to blow up in your face! Insist that

software errors be corrected at the source
(f) Seek help at the very beginning of the code level. Treat error correction as
program don't wait until software develop- redevelopment by tracing all the way back
ment is in trouble because then it is too late. from the system requirements through design
It doesn't hurt to have an outside organization and by ensuring that the documentation is
examine the status of the software at critical updated.
intervals during the development cycle;

The only time a software patch is justified in
(g) Insist that program office personnel attend a software test program is when it is necessary
software training courses on a periodic basis, to disable a function for safety reasons or
especially young software project officers. when it is impossible to conduct a particular
Your program will derive benefits by allowing test without the use of a patch. At any, rate
your personnel to keep up with software prac- once these tests are over get rid of the patch!
tice and technology.

Don't even think about fielding into an opera-
(h) Make absolutely sure that the program tional environment any software package con-
office engineering and software personnel taining patches!
perform a thorough review of:

6.8 REFERENCES
- preliminary software design;

1. AFR 800-14, Lifecycle Management of
- test plans and procedures; Computer Resources in Systems, 29 September

1986.
- traceability of requirements from the sys-

tem specification all the way down to the test 2. Buhr, R.J.A., System Design With Ada,
procedures; Englewood Cliffs, NJ, Prentice-Hall, Inc.,

1984.
- the developer's configuration management

organization and procedures. On a major 3. McCabe, Thomas J. and Gordon Schul-
software development, keeping track of the meyer, "The Pareto Principle Applied to
various versions of software is a non-trivial Software Quality Assurance," Handbook of
task. Many major test programs have been Software Quality Assurance, Ed. G. Gordon
severely impacted because the wrong version Schulmeyer and James I. McManus, New
of software has been tested. York, NY, Van Nostrand Reinhold Company

Inc., 1987.
(i) Never. never, never test software that con-
tains patches! A patch is defined as a piece of 4. Myers, Glenford J., The Art of Software
machine language code that is overwritten Testing, New York, John Wiley & Sons, 1979.
over an existing piece of object code. Testing
software with patches is nothing more than a 5. AFSCP 800-14, Software Quality Indicators,
game of Russian Roulette. You may get by January 1987.

6-16

Chapter 7 Post Deployment Software Support

POST DEPLOYMENT SOFTWARE SUPPORT

7.1 BACKGROUND

More than two thirds of the DOD's expendi- the requirements for software. In the 1960s
ture for software is for Post Deployment the Air Force's F-111 aircraft required less
Software Support (PDSS) [1]. The than 100 thousand software instructions. III
Electronics Industry Association (EIA) has the 1970s the Navy's P-3C aircraft required
predicted that Mission Critical Computer about 500 thousand software instructions. In
Software could cost the Depiartment of the 1980s the B-1B required over one million
Defense about $36.2 billion by the year 1992. software instructions just for the operational
Software costs are rising and will centinue to flight programs. Projections for the U.S. Air
rise at a proportionately greater rate than Forces's Advanced Tactical Fighter (ATF)
other system costs. The cost of software will call for about four million software instruc-
continue to rise dramatically unless corrective tions and the Space Station calls for about 80
measures are taken to include: a greater million software instructions. Software re-
awareness by program managers about the quirements for the next generation of systems
problems faced by software engineers; an an- seem to be unlimited. These trends in fielded
derstanding of the problems that arise in the software are depicted in Figure 7-1 [1].
software development process and how they
can be corrected; and a change in the their This increase in the amount of fielded
attitudes about software support. software has obviously increased the require-

ment for software support services. However,
7.2 PROBLEM AREAS this increase in software support and the lack

of qualified personnel to provide these ser-
As discussed in Chapter 2, the growth in the vices, make software support more difficult to
Ise of computer technology, especially in the manage. Dr. Edith Martin in a speech

last twenty five years, has drastically increased presented in 1984 to the Joint Logistics Com-

7-1

Chapter 7 Post Deployment Software Support

IOM - S 2SHUTTLE/OPERATIONAL
0hW SHUTTLFJOFT

MANNED SPACE MISSION CONRON (• l BYTES)

T
R iM GEMINI-3 SHUTLE/OFT

U B- .,

N P1CAAS PEMNNED SYS Ms

lOOK --- /........• ./

T (INSTRUCTIONS)

0 APOLO-5 I E PERSHING 11I(ED)

B & A'7D/E TITAN IIIC TRIDENT C-4

" 10KMINI
T VOYAGER

E PERSHING 1A POSEIDON C-3

S
PERSHING I SURVEYOR MARINER

TITAN 11 VENUS MERCURY

TIK A -'I + I 1 I 1 1

60 70 80 90
DATE OF FLIGHT

Fig. 7-1 Trends in Software

manders Workshop entitled 'The Relation- The EIA study discussed in Chapter 2
ship Between PDSS and Advanced Technol- predicted that by 1992 software will cost the
ogy," estimated that the requirement for DOD about 29.1 billion dollars, and computer
software support personnel was increasing at hardware will cost about 6.1 billion dollars.
a rate of 12 percent per year. However, the Figure 7-2 indicates that software support ser-
availability of qualified personnel was only vices will account for about seventy percent of
increasing at a rate of 4 percent. If one as- this anticipated software cost and software
sumes an annual productivity rate gain of four development will account for the remaining
percent, there will exist a four percent thirty percent. It is apparent that if something
shortfall in the amount of available personnel. is not done quickly, the government will not
Based on these estimates, and assuming noth- be able to afford the software required by
ing else changes, by 1990 the number of per- modern weapon systems.
sonnel required will exceed the number of
personnel available by one million. An effec- The problem of controlling cost is com-
tive way must be found to control both cost pounded by the fact that software support
and schedule and to properly train, develop, funding is fragmented. In 1984, the In-
and retain a cadre of software professionals dustry/Government Workforce Mix Panel of
for both the development of new software and the Joint Logistics Commanders (JLC)
the support of existing software. Possible Workshop on PDSS [21 addressed the Air
solutions to these problems will be discussed Force funding of system acquisition and
later in this chapter. software support. Even after a system is

7-2

Chapter 7 Post Deployment Software Support

FY-90 DOD SOFTWARE LIFE CYCLE

COMPUTER BUDGET COST

SOFTWARE
.'•: .'" $25.6B

COMPUTER SFWR

HARD ARE.............................• fDEVELOPMENT
$ 5 ,6 B 3 0 %

SOFTWARE

SUPPORT

70%

Fig. 7-2 Software Costs

deployed, hardware and software are vices and by all levels within the government.
budgeted, funded, and prioritized by separate These procedures should identify appropria-
processes and channels. Multiple procedures tions, budget programs, program elements,
for budgeting and funding often are required and specific funding codes for weapon sys-
for the same item, as opposed to separate tems using a single, simplified process for set-
budget and funding codes for separate but ting priorities. If this is accomplished, the
related items. All of this creates confusion for government and program managers may at
the program manager or anyone else trying to least get a better picture of the funding issues
get a handle on life cycle costs. Actual cost while affording them a way to deal with it in
tracking can be difficult to deal with and re- an intelligent manner. The way to deal with
quires careful coordination of one-year R&D the current situation is to become aware of the
software money with three-year hardware difficulties and to plan in advance the transi-
procurement money for system modifica- tion of software support. This is done by
tions. Further difticulties can develop when clearly defining the roles and responsibilities
one considers that PDSS may be divided be- of the various support organizations, includ-
tween depot and field-level activities. ing their funding requirements, in the Com-

puter Resources Life Cycle Management
The Air Force has problems in clearly defin- Plan (See Section 7-7).
ing the responsibilities of the depot and those
of the field activities. This not only makes it 7.3 MANAGEMENT PERCEPTIONS
difficult to split up the workload, but adds to
the funding problem. The other services have One of the realities of life is that people have
similar problems that make the funding perceptions about software which may not be
process difficult. If the government is to get a true. Most people understand that hardware
handle on cost, the method used to fund the is tangible, material intensive and produced
development process and PDSS must be bymachine, while software is intangible, labor
streamlined. There should be a common intensive, and mostly produced by hand. They
budgeting procedure used by all of the ser- further accept that hardware deteriorates

7-3

Chapter 7 Post Deployment Software Support

over time, is hard to change, requires preven- software products. The software iceberg
tive maintenance, and has relatively high (Figure 7-3) is a graphic description of some
production costs. Software is believed to have of the various tools, documentation, etc., that
exactly the opposite characteristics. Software form the total software package. For the
does improve over time with updates, re- PDSS facility to properly support the product,
quires no preventive maintenance, and has it must have the same basic tools and informa-
only trivial production costs, but is never easy tion that was available to the developer. One
to change correctly. These perceptions tend should also realize that many of these items
to cause management problems and must be can have their own icebergs. There is a ten-
resolved to decrease PDSS costs. dency to cut costs in software programs by

cutting Out those things that are required later
'There is a mistaken belief that PDSS is a on in the program's life cycle. Sorne program
trivial task and less important than software managers do not fully understand the value of
design. Unfortunately, this results in less procuring items such as simulators, editors,
qualified personnel assigned to do software compilers, test tools, other software tools, and
support rather than the more skilled tech- documentation. Some may even feel that
nicians and managers. The feeling is that such items are gold plating. The fact is that
software support personnel should possess without these items software cannot be
the same skill levels as the local auto properly supported.
mechanic while software design personnel
should have the skills of automotive en- 7.4 MANAGEMENT CONCERNS
gineers.

Program Managers must understand the
Another misconception that plagues some needs of tile user. They are often faced with
program managers is a lack of understanding the need to change the software because of a
as to what constitutes the supportable new requirement (e.g., a changing threat) or

APPLICATIONS
PROGRMS

HOST COMPUrER(S) OPERATING SYSTEMS

/ LANGUAGE TRANSLATORS PROGRAM EDITORS rEST TOOLS

PROGRAM LINKERS SYSTEM SIMULATORS DESIGN TOOLS

ENVIRONMEN rSIMULATORS PROGRAM DESCRIPTION DOCUMENTATION

I CONFIGURATION MANAGEMENT PROCEDURES DIAGNOSTIC SOFTWARE USERS MANUALS

TEST PLANS FLOW CHARTS DEVELOPMENT TOOLS DEVELOPMENT STANDARDS

TEST DRIVERS PERSONNEL PROGRAM DESIGN DOCUMENTS TRAINING

INTERFACE DOCUMENTS I COMPILERS EMULATORS DEBUGGING TOOLS

Fig. 7-3 1'he Software leeburg

7-4

Chapter 7 Post Deployment Software Support

to correct a problem. All program managers critical computers ystem ' life, the implemeiuted
should ensure that the software developed is and fielded software/system continues to sill)-
supportable, and that the capability to support port its original operational mission anl sub-
the software by the government or industry sequent mission modifications and production
exists. This determination of support must improvement efforts."
include the people who will actually do the
work as well as the facilities and tools neces- This means that software is modified to either
sary to accomplish this effort. Cost and correct a problem or to add a capability.There
schedule are obvious drivers in the decision are other ways to look at the various software
process. However, software considerations support activities other than breaking down
must be put in perspective with the total the efforts into modification and the addition
weapon system. Any change to the software of capabilities. Figure 7-4 [3] looks at two
may have an impact on the hardware. In ad- different approaches. Swanson [4] breaks
dition, any changes made to the software may Clown software support into three categories.
impact other software and/or future system The first category talks about corrective ef-
requirements, just as hardware changes have forts, examples of which might be the correc-
impact on the system. tion of a problem in reading a file in a record

properly, or a failure to test all possible con-
7.5 WHAT IS PDSS? ditions. The second category deals with adap-

tive efforts which include such things as
Software does not fail in the classical sense, improving processing speed or adjustnlents to
Hardware degrades over time as components acid new input or output devices. The last
wear out. A software problem is due to an category includes software that is modified to
error that has existed since its creation. make enhancements in response to new re-
When a problem caused by a component quirements, or to give the operator more
failure is found in hardware, the solution en- flexibility. Reutter [5] refined these efforts by
tails bringing the item back to the original breaking them into the seven categories
configuration. In software when a problem is shown in Figure 7-4. Reutter's seven
found and corrected, a new configuration is categories separate support from each of
created. Software does not wear out like Swanson's three categories. The intention of
hardware; so "software maintenance" is a mis- this breakout is to emp)hasize the conmmun1ica-
nomer. The appropriate name for this effort tion between the user and the supl)port activity.
is "software support". The Joint Lo)gistics It also shows the importance of planning for
Commanders in 1984 decided that, in order to support.
answer the many questions about software
support, a definition of Post Deployment There is some disagreement among software
Software Support was needed. Further, such people as to whether the above efforts should
a definition should provide a uniform basis for be called software support or software main-
understanding and dealing with software sup- tenance. The term software maintenance
port issues. The JLCs have defined P1)SS as gives the impression that the effort involves
follows: preventing components from wearing out oF

breaking as in the case of hardware. This is
"Post Deployment Software Support is the sum not the case for software and one of the
of all activities required to ensure that, during reasons why the JLCs use the term software
the production/deployment phase of a mission support. Also the term maintenance does not

7-5

Chapter 7 Post Deployment Software Support

Swanson's Categories Reutter's Categories

CORRECTIVE MAINTENANCE EMERGENCY REPAIRS

Performed to identify and correct Performed when immediate repair is

software failures, performance .. necessary to continue user service.

failures, and implementation CORRECTIVE CODING

failures. Performed to correctly reflect the

specification or to correctly utilize

system resources.

ADAPTIVE MAINTENANCE UPGRADES

Performed to adapt software to Performed to adapt to changes

changes in (he data requirements -- in processing requirements.

or the processing environments. CHANGES IN CONDITIONS

Performed to adapt to changes

in business conditions due to

regulatory situations or other

situations beyond the control

of the organization.

PERFECTIVE MAINTENANCE , GROWTH

Performed to ,.nhance perform- Performed to adapt to changes in

ance, improve cost-effectiveness data requirements or the addition

improve processing efficiency, of new programs, or new users.

or improve maintainability. ENHANCEMENTS

Performed in response to users

requests for changes and additions

to The system.

SUPPORT

Performed to explain systom

capahilities, to plan for future

support, to measure performance.

Fig. 7-4 Types of Software Support Efforts

convey a feeling that design work is being 7.6 SOFTWARE LIFE CYCLE CON-
carried out. In any case, the anIounlt of work SIl)ERATIONS
rc(luired to correct software deficiencies ac-
coLI nts for only about twenty percent of tile One of the major reasons for the high cost of
total software support effort [6]. Eighty per- software support is that it costs muth more to
cent of the P[DSS efforts are spent in adding correct problems after the initial design has
new capability fo fihe software, or refining been comlpleted than it does to correct
reCLu irenlents not clearly defined in the problems early in the devel,nment phase.
0r ginal requirenients. Modifications require the same development

7-6

Chapter 7 Post Deployment Software Support

activities as the original process because late in the development cycle, tends to sig-
software support is redevelopment. It is ex- nificantly increase software life cycle costs.
tremely difficult to understand someone
else's design, to figure out what they were 7.7 IMPROVING TIlE II)SS PROCESS
trying to accomplish, to correct any latent
problems, or to add new capabilities. This can There are a number of actions that can be
become impossible if the documentation is taken to improve the PDSS process and to
poor. reduce software life cycle costs. One of the

most important is the creation ofa document
Figure 7-5 indicates that while most errors are that spells out all of the activities that must be
introduced during the early phases of the accomplished during the life of the software
software development cycle, these errors are program. Within the DOD this document is
not usually found until the software is being called the Computer Resources Life Cycle
validated or supported. Barry W. Boehm [I] Management Plan (CRLCNCMII). The
indicates that the cost of correcting software CRICMI' is developed early in the acquisi-
errors or adding lines of code to existing tion cycle to ensure that all issues and resour-
software increases dramatically as the life ces relevant to the acquisition, testing, and
cycle progresses. There can be as much as a support are properly accounted for. Both the
hundred to one, or greater, increase in costs. Navy, with OPNAVINST 5200.28 [81 and the
In a study performed in 1978 [7], the D)O) Air Force with AiR 800-14 [9] require that
found that the average cost of generating a the CRLCMI) be initiated by the developing

ERRORS ERRORS RELATIVE

SOFTWARE DEVELOPMENT DEV $ INTRODUCED FOUND COST OF ERRORS

REQUIREMENTS ANALYSIS 5%y. 55% 18% 1.0

DESIGN 25%/0 30% 10% 1-1.5

CODE & UNIT TEST 10%

INTEGRATION & TEST 50% 10% 50%7, 1.5-5.0

VALIDATION & DOCUMENTATION 10%

OPERATIONS & MAINTENANCE 5% 22% 10. 100

Fig. 7-5 Sot'tiare lifIe Cycle Considerations

line of code is about seventy-five dollars while activity i t1i ririg CoIr cel)t I"xl)oratio ii a rid uIp-
the average cost of modifying a line of code dated as the prograrui p;ogresses. The
late in the development cycle or after software CR1,(IP is approved prior to `1ull Scale
delivery is four-thousand dollars. This high l)cvclopmenit. I iowcve r, it slIoulId be clearly
cost of rmodifyiNg software, coupled with the Liuriderstood that the ('IICMI' is a livirig
fact that most errors are not Lincovered u1ntilI docuneIn1C lt anId should he uInpdated whenever

7-7

Chapter 7 Post Deployment Software Support

the software is modified. A rule of thumb is to will be the impact on software integrity and
update the CRLCMP at least annually. what are the ramifications for future changes?

The CRLCMP describes the total software In 1984 the JLC report on the "Cost of Owner-
support strategy. It defines the criteria for ship" [2] concluded that program managers
measuring progress and identifies the resour- needed to understand how each PDSS activity
ces needed to develop, test, acquire, and sup- was organized and how it functions within
port computer resources (e.g., facilities, their own services. To this end, they provided
personnel, hardware, software, training, fund- the following descriptions of PDSS centers:
ing, tools). The CRLCMP identifies the
regulations and operating instructions that Army - The Army PDSS center is a center
will be used to manage the system software. It within a DARCOM subordinate command
also identifies all the organizations involved established to support the software subsys-
in the acquisition and support and their roles, temns of all battlefield automated systems for
responsibilities and relationships. The Inl- which that command has logistics support
tegrated Logistics Support Plan (ILSP) is the responsibility. Each center normally sup-
parent document to tile CRLCMP and ports numerous systems.
defines the overall supportability strategy.
Therefore, the CRLCMP should be closely Navy - The Navy PDSS centers' functions and
coordinated with the IISP. staffing are provided for by the In-Service

Engineering Activity assigned the life cycle
Managing PDSS is managing change. It is system support responsibility. Note that a sys-
iMportant to put a rigorous change control tern may be an aircraft avionics package, a
process in place during development that can shipboard navigational system, or a shore-
effectively transition. The program manager based Command, Control, Commu nications
and/or support manager must understand why and Intelligence system.
software changes are needed and what resour-
ces are needed to make appropriate economic Air Force -The Air Force provides for a PI)SS
and technical tradeoffs. An effective change center as part of Integrated Support Facility
control system allows the programn manager to (ISIt') which is used to provide all hardware
make these decisions, and software engineering support. '[his IS! is

located in the engineering division or branch
IPI)SS managers must understand their role in which supports the system program director
the Pl)SS process and the motivation for a (SPD) in an Air Logislics Center.
software change. Is a change required to add
a capability that the user needs, or to correct Marine Corps -The Marine Corps has estab-
a deficiency? If a change is required, are the lished a single PDSS center comipletely
personnel necessary to implement the change separate from hardware maintenance
available and capable of performing the task? facilities. This center provides sUptort for
I las the program office provided the software designated Marine Corps Software programs.
support personnel the necessary tools and
resources necessary to make changes success- I. Organization Chain:
fully? When a change is to be made, will there
le any disruption to current ,:ervices? I-low Within the services, P1)SS centers are located
long will it take to make these changes? What either in a Iogi;tics chain, a Research and

7-8

Chapter 7 Po3t Deployment Software Support

Development (R&D) chain or a combination acquisition manager is responsible for procur-
of the two. The Navy has a combination chain ing the initial suites of equipments, and the
with a single boss. The Air Force PDSS cen- PDSS center is responsible for updat-
ter is in the logistics chain, bhlt receives direc- ing/replacing that equipment. In the Army,
tion from a logistics boss via the R&D chain, no defined responsibility exists to ensure that
The Army established 11 PDSS centers lo- the developer acquires the support environ-
cated at the development commands, but ment, including mockups and simulators.
funded by the readiness organizations within
combined commands. Overall PDSS 5. How Location Is Determined:
management is performed by DARCOM.

The Air Force locates the PDSS centers
Coordination between R&D and logistics is within the system program directorate (Air
always difficult. Having a single boss reduces Logistics Center) along with sustaining en-
the difficulty to some degree. gineering. The Navy collocates the PDSS

centers with the activity responsible for in-
2. Development oflPolicy and Compliances: service engineering support. The Marine

Corps only has one PDSS center whose comn-
Higher level headquarters establishes policy, nmand has the logistics responsibility for the
publishes implementing instruction and en- system or has computer resources. If the sys-
sures compliance by the P[)SS centers within tern is a command and control system, the
their individual commn1ands. PDSS center is collocated with the battlefield

functional area school.
3. ihow Funded:

6. How System is Learned:
The Air Force is Operations and Main-
tenance ((.)&M) fIunded u11nless a major The Army and Air Force PIDSS centers be-
rebuild is required; then the system goes back come involved at the beginning of tihe
to the developer and R&D furinds are used. development cycle. '[hey either p)articipate in
"The Navy primarily uses ()& M funds, but may the developmental process or become the
also serd major im odifications back into a IV& V organizatioi. [he Navy may follow the
R&D) cycle. T'he Marine C'orps uses R&DI) same procedure, !l,.)eldingg on wheni the
funds. 'T'he Army uses a pIetlhora of' funding PI)SS center is designated. The Marine
including nu1L1Ceroi1s types of ()& M, procutre- Corps PI)SS center has previously been in-
mielt and R&) dollars. volvwd as part of the development respon-

sibility and has replaced it with more of an1
A standard approach to firiding and a better IV&V type role.
definition of mnaintelnCe would helpl reduce
somne of these overly burdenWSom11e requisition The involvenment of tle PIDSS centers
and accounting 1inuct1io6s:. throughout tile development cycle is critical

to tle successful performna.nce of PI)SS woirk.
4. Acquire Softwýe -c, nvironlntielt:

7. Use Of1 the PI)SS Center For IV&V:
In all the services, the PI)SS centers, in con-
.JUIctionl with thlie (cvehlo)cr, idcentify support There is currently no stated rcquiremerilt to
requiremenits. In the Navy and Air lorce the p)erform IV&V in any of' the services, and

7-9

Chapter 7 Post Deployment Software Support

there is a wide variance of how the services tions are developed and testing is conducted
accomplish IV&V. In those programs where to ensure that the original problem has been
there is a requirement for IV&V, the PDSS solved and that additional problems have not
center is a logical choice and shcld be used been created.
to the maximum extent practical.

12. Integration Testing:
8. Software Configuration Control:

In all the services, integration testing is per-
All service PDSS centers perform configura- formed when the PDSS center has completed
tion control, but are not always formally system testing. With the exception of the
tasked with performing configuration Navy, testing is always performed on the ac-
management. tual equipment being integrated. In the Navy,

the size of the integration problem often
9. Type of Changes: prevents the PDSS center from conducting

the integration testing in a totally realistic
There are three types of changes: those environment. The software which has been
brought about by latent defects; those brought modified is run on actual system hardware,
about by user enhancement requests; and but those systems with which it communicates
those necessitated by major product improve- (i.e., integrated) may be simulated. The
ments. All the service IPDSS centers perform limitations on integration testing of Navy
the first two types of changes. Major product shipboard combat systems due to the
improvements are usually accomplished by a availability of actual systems are recognized
contractor, with the PDSS center providing and organic integration facilities have been or
backgrounld information and support. are being established. These facilities are

outside the PDSS centers' responsibility and
10. E~valuation Of Complaint: control, but are available to the PDSS center

for use.
The Army maintenance directorate sends
logistic support representatives to the user 13. interoperability 'resting:
activity to investigate complaints. Once the
problem is identified and verified, tie main- All the service PDSS centers conduct inter-
tenance directorate notifies the PDSS centers operability testing to ensure that changes
who then attempt to duplicate the problem. made to correct problems will in no way inter-
'[he other service PI)SS centers receive the fere with the capabilities of the system to
trouble report directly frol 1 the user and at- communicate with other systems.
tempt to duplicate the problem. Responses
back to the complaining user vary from pern- 14. Documentation Update:
odic status reports about the complaint to not
p)roviding any follow-up information. All the service PDISS centers update

documentation for every change made. Two
11. D)evelop Software Engineering Change major problems being experienced are the
Solution: inadequacy of many existing standards and

initial delivery of poor documentation.
()nce the problem has been identified, the Standards must be published that meet the
PI)SS centers determine the cause. SolIu- needs of all services and contracts must be

7-10

Chapter 7 Post Deployment Software Support

written to require documentation in accord- stable workforce. This may require the pro-
ance with these standards. DOD-STD-2167A gram manager to develop a continuous train-
is a positive step in the right direction. It ing program for software personnel. In order
describes a common approach to software to get more out of the personnel, program
development, managers must provide the supporting ac-

tivity modern tools and facilities;
15. Distribution Of Software Corrections To
Users: (d) Documentation and support software

tend to be cut out of programs early in the
For systems where there is limited distribu- development process in order to save money.
tion, changes are hand-delivered and accom- This causes severe problems later on in the
panied by sufficient instruction to allow the program. It is important that all the tools
user to execute a smooth transition. In those necessary to provide software support are
systems where a large number of changes delivered to the support facility;
must be installed, the users are supplied with
a written instruction package through a dis- (e) The software baseline must be controlled
tribution process. throughout its life cycle by using good con-

figuration management techniques;
7.8 MANAGEMENT GUIDANCE.

(f) The program manager should involve the
By changing the traditional prejudices toward PDSS organization early in the development.
software support, by following sound en- The personnel at these facilities have a wealth
gineering practices, and through the use of of knowledge about what is required to sup-
good management tools and plans, program port a program and about the associated
managers can begin to deal with the software problems. This provides the program
life cycle support problems. The following manager with a real time lessons learned;
represents a set of guidelines which can be
followed by the program manager and can (g) It is imperative that the program manager
lead to more cost effective software support: appropriately plan, budgets, and fund the

PDSS effort.
(a) The program manager must ensure that
sound software engineering design techni- 7.8 REFERENCES

Lues are used during the development
process where the majority of all errors are 1. Boehm, Barry W., Software Engineering
introduced and that the software is designed Economics, Englewood Cliffs, NJ: Prentice-
for suIpportability; Hall, Inc., 1981.

(b) The CRLCMIP must be developed early in 2. "Final Report of the Joint Logistics Corn-
the life of the program development cycle inanders Workshop on Post Deployment
(Concept Exploration phase), periodically Software Support for Mission Critical Corn-
updated and adhered to;)uater Resources," Volume II - Workshop

Proceedings, June 1984.
(c) Personnel and productivity are important
issues. It is incumlbent upon program 3. Martin, James and Carma McClure,
managers to acquire and retain aqualifiCd and Software Maintenance - 7/e Problem and its

7-11

Chapter 7 Post Deployment Software Support

Solutions, Englewood Cliffs, NJ: Prentice- dison-Wesley Publishing Co., Inc., 1980, pp.
Hall, Inc., 1983. 151-157.

4. Swanson, E., "The Dimension of Main- 7. De Rosel, B., and T. Nyman,'The Software
tenance," 2nd International Conference on Life Cycle - A Management and Technologi
Software Engineering, Proceedings, San Fran-
cisco, October 13-15, 1976, pp. 492-497 cal Challenge in the Department of Defense,"

IEEE Transactions on Software Engineering,
5. Reutter, John, "Maintenance Is a Manage- Vol. SE-4, No. 4, July 1978, pp. 309-318.
ment Problem and a Programmer's Oppor-
tunity," AFIPS Conference Proceedings on 8. OPNAVINSTR 5200.28, Life Cycle
1981 National Computer Conference Management of Mission Critical Computer
(Chicago), Vol. 50, May 4-7, 1981, pp.343- Resources, 25 September 1986.
347.

9. AF Regulation 800-14, Life Cycle Manage-
6. Lientz, B., and E. Swanson, Software Main- ment of Computer Resources in System, 29
tenance Management, Reading, MA: Ad- September 1986.

7-12

Chapter 8 PlannIng for Computer Software

CHAPTER 8

PLANNING FOR COMPUTER SOFTWARE

8.1 INTRODUCTION

This chapter will discuss the software plan- tics Support Plan (ILSP), the Computer
ning activities that must be conducted during Resources Lifecycle Management Plan
tie various phases of software acquisition. (CRLCMP),and the System/Segment
The success of any project is greatly deter- Specification (SSS).
mined by how much care and time are put into
the planning process. Software development 8.2.1 Program Management Plan (PMP)
and acquisition are no different!

The purpose of the PMP is to guide all pro-
Planning for computer software begins during gram office personnel toward a common goal.
the Concept Exploration (CE) Phase and in- The PMP provides essential information on
tensifies during the Demonstration and the overall program strategy and goals. It can
Validation (D/V) Phase. By the time the pro- be viewed as the game plan for the program
gram enters the Full Scale Development office and includes a schedule of the major
(FSD) Phase, most of the necessary software events leading to the initial operating
planning documents should have been capability (1C).
generated.

The PMP should be updated and kept current,
8.2 PLANS AND DOCUMENTATION particularly with respect to the schedules. It

should be mandatory reading for every new-
The major plans and documents generated by comer into the organization. This is especially
the program office are the Program Manage- true in software development since software
ment Plan (PMP), the Test and Evaluation is usually on the critical path. A detailed out-
Master Plan (TEMP), the Integrated L)gis- line of the PMP is given in Appendix C.

8-1

Chapter 8 Planning for Computer Software

8.2.2 Test and Evaluation Master Plan characteristics, changes in the reassessment
(TEMP) of test resource provisions and limitations, or

any changes deemed necessary by the OSD.
The TEMP is the basic planning document for A detailed outline of the TEMP is found in
all test and evaluation (T&E) related to a Appendix D.
particular system acquisition. It is used by the
Office of the Secretary of Defense (OSD) and 8.2.3 Integrated Logistics Support Plan
all DOD components in planning, reviewing, (ILSP)
and approving T&E. The TEMP provides the
basis for all other detailed T&E planning The ILSP describes and documents the in-
documents. tegrated logistics support program. It is the

principal logistics document for an acquisi-
The TEMP must address the effects of human tion program and serves as a source d :ument
performance on the weapon system's opera- for summary and consolidated information
tional effectiveness and the ability of the sys- required in other program management
tern to meet performance standards, documents. It is summarized in the System
including reliability and maintainability. Concept Paper (SCP) and the Decision Coor-

dinaion Paper (DCP).
i'he TEMP must address the system's critical
technical performance thresholds and their The purpose of the ILSP is to:
relationship to the system's required opera-
tional characteristics. It must clearly outline (a) Provide a complete plan for support of the
the planned T&E process through which the fielded system;
test objectives will be met. It must also
describe the physical hardware tests and any (b) Provide details of the ILS program and its
analysis required to provide data not gained relationship with overall program manage-
from actual testing. ment;

The TEMP must clearly describe the required (c) Provide decision making bodies with the
T&E activities along with all the necessary necessary information on ILS aspects for
resources for fully testing the operational making sound decisions on further develop-
suitability of the weapon system. ment and production of the basic system;

The TEMP is intended to be a living docu- (d) Provide the basis for the preparation of
ment that addresses the changing critical is- the ILS sections of the procurement package,
sues affecting any acquisition program. e.g., statement of work (SOW), specification,
Major changes in program requirements, and source selection and evaluation criteria;
schedule, or funding usually result in a change
to the test program. To ensure that T&" (e) Describe how readiness and sustainability
requirements are current, the TEMP shall be will be achieved.
updated on an annual basis until all significant
testing is complete. The update shall reflect The ILSP is initially a section of the Program
changes to the T&E program due to: test Management Plan (PMP) but, early in the
results, changes in the scope or schedule of Demonstration and Validation Phase, it is
the T&E program, changes in the required removed from the PMP and becomes a stand-

8-2

Chapter 8 Planning for Computer Software

alone document. At a minimum, the ILSP is transitioned to the user ;he software support
updated annually. A detailed outline of the activity will assume responsibility for the
ILSP is found in Appendix E. CRLCMP. A detailed outline of the

CRLCMP is found in Appendix F.
8.2.4 Computer Resources Life Cycle
Management Plan (CRLCMP) 8.3 ENGINEERING STUDIES

The CRLCMP is the primary planning docu- Systems engineering studies are based on the
ment for computer resources throughout the concept of a hierarchy of requirements start-
system life cycle. It complements the In- ing with system level requirements and en-
tegrated Logistics Support Plan. The purpose ding with detailed engineering specifications
of the CRLCMP is to: and data. System definition proceeds by

refining each level of requirement into subor-
(a) Document the software support concept dinate requirements until the entire system is
and the resources needed to achieve the sup- described. Computer resources are con-
port posture; sidered as an integral part of the system and

are subject to tradeoff and optimization
(b) Document the computer resources studies. Systems engineering studies will nor-
development strategy; mally include:

(c) Identify the applicable directives (regula- Requirements Definition - Requirements
tions, operating instructions, technical orders, definition begins with the creation of the sys-
etc.) for managing computer resources in the tem level requirements specification. This
system; definition may be spelled out in either the

System/Segment Specification (SSS), the
(d) Define any changes or new directives Prime Item Development Specification
needed for the operation or support of com- (PIDS), or the Critical Item Development
puter resources; Specification (CIDS). The developer then

performs the necessary analysis to determine
(e) Define the scope of independent verifica- the preliminary allocation of the require-
tion and validation (IV&V) efforts. ments between hardware and software. In ad-

dition, the developer begins work on the
Development of the CRLCMP is initiated preliminary Software Requirements
during the Concept Exploration phase. The Specification (SRS) and the preliminary In-
CRLCMP is coordinated with the user and terface Requirements Specification (IRS).
supporting organizations before release c The formal allocation of what is to be ac-
the Full Scale Development solicitation. complished in hardware and what is to be

accomplished in software is documented in
During the Production and Deployment the Systems/Segment Design Document
phases, the CRLCMP is updated, as required, (SSDD). These documents are necessary for
to reflect significant changes in the system or the effective accomplishment of the software
its support environment. When updating the design. The System Specification and the
CRLCMP, sections that refer to ac- SSDD are approved at the Systems Design
complished events should be reworded as his- Review (SDR) and a Functional Baseline es-
torical notes or deleted. After the system is tablished.

8-3

Chapter 8 Planning for Computer Resources

Interface Definition - The Computer porate into the system risk management plan
Resources Working Group (CRWG) and the or the CRLCMP.
Interface Control Working Group address
system and subsystem interface requirements Software Support Studies - Software support
that may affect computer resources. The re- studies are conducted to refine the system
quirements for these interfaces are docu- support concept, to allocate software support
mented in system specifications (i.e., SSS, requirements, and to identify operational sys-
PIDS, CIDS).They are furthered detailed in tem software.
the IRS. The IRS and the SRS are later ap-
proved at the Software Specification Review 8.4 TtHE COMPUTER RESOURCES
and together these two documents formally WORKING GROUP (CRWG)
define the Allocated Baseline.

A CRWG should be established as early as
Tradeoff and Optimization - Tradeoff and possible during the CE Phase but no later than
optimization studies should consider: Milestone I. For modification programs, and

those acquisitions closely related to ongoing
(a) Tradeoffs between computer software and programs, an existing CRWG may be used.
computer hardware; The CRWG's role is to participate, in an ad-

visory capacity, in all computer resources
(b) Required computer processor architec- aspects of the program. This includes pro-
tural features such as memory size, speed, gram management reviews, source selection
input and output capacity, and spare capacity; evaluation boards, design reviews, and audits.

(c) Use of standard equipment, HOIs, in- The CRWG is formally chartered by the pro-
struction set architectures, and interfaces; gram manager and should ccordinate its ac-

tivities with the operational user, the
(d) Alternate approaches for meeting system supporting organization, the interface control
security requirements; working group, and any other organization

with an active interest in the program. At a
(e) Improved supportability versus improved minimum the CRWG will:
performance;

(a) Advise the program manager in all areas
(f) Use of existing government resources or relating to the acquisition and support of corn-
commercial off-the-shelf resources versus puter resources;
new development.

(b) Generate the initial CRLCMP and update
Feasibility Studies - These studies determine it as the program progresses;
the feasibility of alternative allocations of sys-
tem requirements to computer resources and (c) Select a software support concept and
the derivation of data for formulating budgets document it in the CRLCMP;
and schedules.

(d) Monitor compliance of the program with
Risk Analysis - Identify the major software computer resources policy, plans, procedures,
development risks using Table 8-1 and incor- and standards;

8-4

Chapter 8 Planning for Computer Software

CAUSE ACTION

Lack of adequate definition of computer resource functional, System engineering techniques such as funtional analyses,
interface, support, or performance requirements prior to simulation, mathematical modeling, correctness proofs, and
structuring the program. tradeoff analyses.

Poorly defined, complex, or untestable intra- or inter-system Incremental development strategies which tackle large, com-
interfaces, including human interfaces. plex, and poody understood equirements in smaller, more

manageable parts.
Lack of stability in computer resource requirements during
development.

Lack of government visibility into the contractor's software Rigorous application of traditional cost, schedule, and per-
development effort, formance tracking techniques with careful attention to

earned value progress against measureable milestones.
Since these techniques are almost always driven by the
WBS, visibility of critical and high risk computer resources
is a primary criterion for determining the appropriate level
within the WBS for these components of the system.

Use of a risk tracking system to collect data on the status
of identified high risk items. The output of this system
should be a standard part of periodic reviews.

Use of independent verification and validation.

Performance requirements that push the state of the art. Prototyping or duplicate development of key algorithms,

concepts, and components.

Inaccurate, poorly defined, or nonexistent cost and schedule Multi-source cost and schedule estimates using a variety of
estimates for computer resource development, estimating techniques and models. Avoid basing all esti-

mates on "lines of code" estimates derived from a single
source.

Inadequate developer and acquisition manager capability or Reviews of offerors sites to assess capability and capacity
capacity for software development, of development personnel, management structure and

procedures, and facilities.
Inadequate, immature, or poorly integrated software develop-

ment tools (e.g., compilers, linkers, loaders) & programming
support environment.

Lack of ad,'quate spare computer hardware capacity (e.g., Early planning for spare capacity during development and
processor speed, memory, input/output, and secondary support phases of the lifecycle; periodic reviews of capa-
storage, city allocation, and projection of requirements trends,

Undefined or poorly defined software support concepts. Rigorous adherence to the separtion of mission software
and system softwaic into separate OSCIs.

Table 8-1. Common Risks and Possible Corrective

(e) Insure that software testing is adequately (g) Define the scope of the IV&.V effort and
addressed in the TEMP and monitor corn- develop a recommended approach using con-
pliance as the program matures; tractor or government personnel;

(f) Identify and prioritize the required (i) Evaluate the use of standard equipment,
software quality factors such as inter- HO- s, and instruction set architectures;
operability, portability, flexibility, useability,
reusability, maintainability, integrity, (I) Evaluate the need for development of
reliability, correctness, testability, and ef- software tools and recommend a develop-
ficiency. ment approach

8-5

Chapter 8 Planning for Computer Software

8.5 SYSTEM SECURITY CRLCMP, and examined during the various
engineering studies.

The Program Manager should review security
directives and identify mission security needs It is beyond the scope of this guide to provide
early in the development cycle. Experience complete information on system security;
has shown that it is much cheaper to design however, the PM is ultimately responsible for
security into the system from the outset than the security of system. It is imperative that the
to add it on to a mature system. It is more PM appoint a security manager early in the
cost-effective to include security in the initial acquisition cycle.
design. A security requirements' analysis
should be conducted even if funding is very 8.6 CONTRACTUAL CONSIDERATIONS
limited and trusted security features are not
incorporated into the system design. A recurring activity conducted by the program

office is that of selecting one or more contrac-
The ability to evaluate the security of a system tors and putting them on contract. Although
improves the user's confidence that the the intensity of the activity and the number of
security mechanisms are sufficient and contractors to be evaluated may differ, the
functioning. If security features are examined process of selecting a contractor(s) is the same
in the design phase, assessment criteria can be regardless of the phase of development. The
established in advance, and security features three major activities performed are: generat-
tested and evaluated throughout the develop- ing a source selection plan, generating a re-
ment life cycly rather than at system deploy- quest for propo,'dl package, and conducting
ment. This also makes it easier to satisfy the the source selection process.
system certification and accreditation re-
quirements. System certifica ion ensures that 8.6.1 Source Selection Plan (SSP)
technical computer security features have
been tested and are shown to be adequate. An outline of a typical SSP is given in Appen-
System accreditation ensures that the system dix G. The SSP is a key document for initiat-
safeguards meet DOD operation security re- ing and conducting a source selection. As
quirements.. shown in Appendix G, the SSP should address

mission critical computer resources. It is
Unfortunately, MIL-STD-2167A is silent on prepared by the program office and must
security and there are no security Data Item reflect applicable program management
Descriptions referenced in that standard. direction or guidance. For the Air Force, this
DOD-STD-5200.28, DOD Trusted Computer guidance is reflected in the Program Manage-
System Evaluation Criteria, however, provides ment Directive (PMD). The SSP is a plan for
evaluation methods and criteria for system organizing and conducting the evaluation and

,urity. This book, generally called the analysis of proposals and a roadmap for the
orange book" and published by the National selection of a source or sources.

Computer Security Center (NCSC), is sup-
ported by several related security guides. This The SSP must be submitted sufficiently in
group of documents is informally known as advance of the planned acquisition action to
the "Rainbow Series". Security provisions facilitate review and approval by the Source
must also be incorporated into planning docu- Selection Authority (SSA) and early estab-
ments, such as the PMP,TEMP, ILSP, and the lishment of the Source Selection Advisory

8-6

Chapter 8 Plannina for Computer Software

Council (SSAC) and the Source Selection 8.6.2.2 Instructions to Of'erors
Evaluation Board (SSEB).

In addition to specifying proposal form and
8.6.2 Request for Proposal Package (RFP) content, the instructions to offerors must re-

quire submission of such documents as a
The RFP package must be sufficiently Software Development Plan, a Configuration
detailed to allow responding offerors to ade- Management Plan, and a Software Quality
quately address system requirements and to Program Plan as part of tie proposal. These
provide other information necessary for plans should include the offerors' software
evaluation and award. The RFP package typi- development organization, their develop-
cally consists of a requirements specifica- ment methodology, their management
tion(s), instructions to offerors, proposal philosophy, and their procedures for control-
evaluation criteria, a statement of work, a ling andassessingcdevelopment progress. Ap-
work breakdown structure, requirements for pendix H lists the various DIDs which
deliverable items, and special contract re- describe the format and content of these
quirements. Supporting information that ex- documents.
pands o01 the system operations and support
concepts, including the CRLCMP, may be The instructions to offerors are tile
attached to the RFP package. mechanisnm for ensuring that offerors address

critical software issues such as:
Even though the RFP is prepared by the pro-
gram office, it is good practice to solicit inputs (a) The met hodology used to perforli
from the using and supporting organizations. software sizing and cost estimating aind the
They usually provide valuable insight into the approach to be followed during software
operational and support environment, development;

8.6.2.1 Requirements Specification(s) (b) The rationale used for the computer
resources timing and sizing estimates;

The requirements specification(s) included in
the RFP is dependent on the phase of the (c) A description of any teaming and sub-
system development being undertaken. If contractor arrangements;
one is contracting for the CE phase, then tile
specification would be an overall system (d) Tie skill levels required for computer
specification. For the D/V phase, tile resources development and their availability
specification would be the Systern/Segment within tihe corporate structure;
Specification. For the FSI) phase, the
specifications would be tle refined Sys- (e) The method to be used for risk control;
tem/Segment Specification and could include
the Software Requirements Specification and (f) Any planned use of firmware;
the Interface Requirements Specification.
Appendix IH lists the various Data Item (g) Reusing or modifying existing software;
Descriptions (DIDs) called out by DOD-
STD-2167A which govern the format and (h) A clear definition of all assumptions used
content of the required spvcifications. during proposal preparation;

8-7

Chapter 8 Planning for Computer Software

(i) Plans for the development of prototype tor and the type and amount of support ex-
software; pected from the development contractor;

(j) Plans and procedures for generating and (c) Tailor all contrL ly required standards
using software metrics, and specifications to the program needs;

(k) The computer language that is to be used (d) Address the planned use of government
provided operational and environmental

(1) The level of system security required. simulators, support equipment, or other
software programs (e.g., compilers);

8.6.2.3 Proposal Evaluation Criteria
(e) Require comprehensive layout of pro-

The evaluation criteria must be based on the gram schedules to include reviews, technical
requirements within the RFP. This includes interchange meetings, audits, and testing;
computer resource development and
management activities and the offerors' (f) Address the requirements for prototype
software management plans described in the software development;
Software Development Plan and other ap-
plicable documents. The criteria in the RFP (g) Address the requirements for generating
should be listed in relative order of impor- and using software metrics data.
tance. The evaluation criteria must include
the availability of software, documentation, (h) Address the appropriate trusted system
and the rights necessary to meet life cycle accreditation and certification requirements.
needs and the compatibility of the proposed
design with the support concept defined in the 8.6.2.5 Work Breakdown Structure
CRLCMP. This will ensure that the design is
modifiable and that proposed support resour- A preliminary work breakdown structure
ces and methods are adequate. When the (WBS) may be included in the RFP package.
processing of sensitive or classified informa- The contractor will be expected to develop
tion is involved, the program office must en- their own WBS containing additional levels of
sure that computer security is also included in detail.
the evaluation criteria.

8.6.2.6 Deliverable Items
8.6.2.4 Statement of Work (SOW)

Deliverable computer hardware and
The SOW will identify the applicable program software, including support and test software,
management, development, test, training, in- will be specified as contract line items
stallation and support tasks to be performed. (CLINs) in the schedule of the contract. The
More specifically, the SOW will: CLINs should specifically call out deliveries

of such items as operational flight programs
(a) Identify clear and concise statements of (OFPs), test program sets (TPSs), simulation
specific task; software, and incremental deliveries of

various versions of all of these. Documenta-
(b) Address the planned use of an Inde- tion requirements will be identified in the
pendent Verification and Validation contrac- Contract Data Requirements List (CDRL),

8-8

Chapter 8 Planning for Computer Software

and software media delivery requirements contractor should be made responsible for
will be specified in the Software Require- maintaining engineering compatibility be-
ments Specification which will be listed in the tween all system hardware and software, in-
CDRL. For software, deliverable items will cluding the incorporation of newly released
include complete source code in a form versions of software. Operating system
suitable for compilation or assembly and the software falls into this category.
complete object code in a form suitable for
loading and executing in either operational or 8.6.3 Source Selection Process
support computers. The CDRL may include
the documentation needed for developing, The principal objective of the source selection
testing, operating, and supporting the system process is to select the source (offeror) whose
and for training personnel. Appendix H1 lists proposal has the highest degree of credibility
the various DIDs for this additional documen- and whose performance can be expected to
tation. If all the documentation needs cannot best meet the government's requirements at
be identified before contract award, the an affordable cost. The process should pro-
CDRL may include a report that will identify vide an impartial, equitable, and comprehen-
data items needed to satisfy the system sup- sive evaluation of ihe competitors' proposals
port and operational concepts. A Data Ac- and related capabilities. The process should
cession List should be used to identify the be accomplished with minimum complexity
contractor's informal documentation to be and maximum efficiency and effectiveness. It
made available for government review, should be structured to properly balance tech-

nical, financial, and economic considerations
8.6.2.7 Special Contract Requirements consistent with the phase of the acquisition,

program requirements, and business and legal
Special requirements are tailored contractual constraints. A typical source selection process
clauses incorporated into the contract to in- is depicted in Figure 8-1.
sure the government's right to computer
software and to provide adequate protection 8.6.3.1 Draft RFP
whenever commercial off-the-shelf software
is used. If it is at all possible, the process should begin

with a draft RFP which consists of preliminary
Restricted Rights Software - The RFP should versions of a statement of work, a specifica-

require the offeror to identify and cost all tion, schedules, a contract data requirements
restricted rights computer software or equip- list (CDRL), and evaluation criteria. Unfor-
ment, associated documentation, and support tunately, time and resources do not always
items required to be delivered, or subject to permit a program office to generate and cir-
order, under the contract. culate a draft RFP.

Commercial Off-the-shelf Software (COTS) - By circulating a draft RFP among the various
Procedures may be developed and incor- internal goverpment organizations (i.e., con-
porated into the contract to ensure tOiWt the tracts, legal) the RFP can be evaluated for
contractor reviews all subcontractor or ven- consistency and content. These organizations
dor products and that all commercial can provide valuable comments which help to
hardware and software in the system are sup- ensure that the final RFP doesn't become
ported to the correct configuration level. The bogged down because of major shortcomings.

8-9

Chapter 8 Planning for Computer Software

OFFERORS

-1 PREPARE OFFLRORS
INTERNAL PROPOSALS

INDEPENDENT

REVIEW

DRAFT EVALUAT
RFP EVLUT FACT F'INDING

RELRFP PROPOSALS_______P_____RELEASED

INDUSTRYS DEVELOPMENT

No. REVIEWND CAPABILITY/CAPACITY

REVIEW

INTERNAL RATE
I PROPOSALS

CONTRACT SOURCE INDEPENDENT

AWARD SELECTION ý - - REVIEW PER
AWARDEVALUATION

AUTHORITY OF CRITERIARATING

Fig. 8-1 Source Selection Process

An industry review can also be very helpful. ing the source selection organization and the
Industry may provide constructive informa- proposal evaluation criteria. Although the
tion on the potential technical, schedule, and general evaluation criteria have already been
cost risks associated with the intended released with the RFP, specific sub-criteria
procurement. For example, they may provide and factors may still require fine tuning
alternative approaches to high risk areas and
indicate areas which are ambiguous, con- 8.6.3.2 Populating the Source Selection Or-
tradictory, or likely to be major cost drivers. ganization

All industry comments, however, should be One of the constant problems faced by pro-
carefully examined to separate fact from gram managers is finding qualified software
marketing information. Some companies individuals willing and able to be away from
may not be able to resist the temptation to their jobs for an extended period of time.
suggest changesoradditionstotheRFPwhich Source selections can take anywhere from
could enhance their competitive posture. In three to six months to complete. Since quality
spite of this danger, industry comments can be software individuals are already in short supp-
tremendously useful. ly, a program manager may have to resort to

innovative means for acquiring them. If one
A final RFP can be prepared and released or two experienced software people are al-
once comments have been received from in- ready on the staff, then the problcn becomes
dustry and other internal organizations. more manageable. The task of finding addi-
While the bidders are preparing their tional knowledgeable but less experienced
proposals, the program office will be finaliz- software people is a bit easier.

8-10

Chapter 8 Planning for Computer Software

DETAILED
PROPOSAL EVAL

SSEB FORMAL
PROPOSAL

EVAL

SSAC
EVAL

ANALYSIS

& FINDINGS

PROPOSALS
SSA

TECH111--- SELECTION

DECISION

Fig. 8-2 Evaluation Process

The problem is more difficult if a program 8.6.3.3 Evaluation Process
manager does not have in-house expertise.
The first place to look for experienced The evaluation process itself is well defined
software personnel is in another program of- and regulated by the DOD and service
fice that may be willing to release in- peculiar regulations and procedures. Figure
dividual(s) for the duration of the source 8-2 depicts the typical evaluation process
selection. Another source could be the which begins with the receipt of cost, technical
various laboratories within the command or and management proposal volumes, as a min-
service. A sister service may be able to pro- imum. The Source Selection Evaluation
vide temporary software expertise. There are Board (SSEB) is comprised of the functional
also federally established, not-for-profit or- area experts who actually perform the
ganizations such a . Aerospace Corp., the detailed evaluation. Since this is a time-con-
Mitre Corp., and the Software Engineering suming but critical step, it is important that
Institute whose employees routinely par- the lead individual expedite the process.
ticipate in government source selections. Endless discussions over trivial or irrelevant
Other corporations exist which may be able to points cannot be tolerated. Even when
participate in a source selection. These cor- serious topics are the source of major dis-
porations are primarily analyses oriented and agreements among the evaluators, the lead
normally do not produce or develop hardware software individual must force the people in-
for the commercial market. The Rand Corp volved to come to a reasonable and timely
and the Charles Draper Laboratory fall into consensus. Minority opinions and views
this category. The lead software individual, should be aired and, at the discretion of the
however, must be a government employee, lead software person, documented and

8-11

Chapter 8 Planning for Computer Software

presented to the Source Selection Advisory (e) Availability, currency, and usage of
Council (SSAC) for resolution. By the same software development tools and methods;
token, an individual's infatuation with a par-
ticular technology should not be allowed to (f) Organic supportability of computer
unduly bias the proposal ratings. For ex- hardware and software;
ample, an individual's infatuation with object-
oriented design, sho'ild net interfere with his (g) The offeror's Software Development Plan
appraisal of a more conventional approach and software development standards and pro-
(e.g., functional decomposition). cedures;

Once the SSEB completes its evaluation, the (h) The offeror's software development
results are presented to the SSAC. The capability and capacity.
SSAC, which is composed of senior govern-
ment personnel, then evaluates the analysis It is important to emphasize the need to per-
and findings of the SSEB and presents the form an integrated, comprehensive evalua-
results to the Source Selection Authority tion of the offerors' total proposal. This
(SSA). The SSA is the official designated to usually means that technical evaluators must
direct the source st.lection and to make the also review the management and cost
final source selection decision. proposals. The cost evaluators normally con-

centrate on accounting and costing consisten-
8.6.3.4 Evaluating Offeror's Proposal cy and completeness. They are not qualified

to passjudgment on whether a proposed num-
Since every program has unique require- ber of man-hours are sufficient for a par-
ments, it is beyond the scope of thisguidebook ticular analysis or effort. Only the technical
to provide specific information on what is evaluators can make this assessment.
important in a software source selection. In Likewise the technical evaluators can also as-
general, however, the software evaluation as- sess whether a particular management or-
sesses the technical adequacy of the proposed ganization or procedure is consistent with the
computer system architecture to satisfy the technical effort proposed. One is not advocat-
weapon system requirements. Items that are ing that all technical evaluators review cost
evaluated include: and management data. What is being

proposed is that one or two key individuals
(a) The throughput and memory capability of from the technical panel make a top-level
the proposed computers; review of cost and management data for

realism and consistency.
(b) Future vendor support for commercially
supplied items such as tape drivcs, disk drives, 8.6.3.5 Software Development Capability
controllers, etc.; Capacity Review

(c) Computer resources interfaces to the rest Figure 8-1 shows a software development
of the system architecture and human capability and capacity review (SDCCR) oc-
operators; curring as part of the source selection process.

The SDCCR has been successfully used at the
(d) Adequacy of the operating system or Aeronautical Systems Division of the Air
software executive; Force Systems Command at Wright-Patter-

8-12

Chapter 8 Planning for Computer Software

son AFB. It is described in ASD Pamphlet part of the basis for the award. It is highly
800-5, Software Development Capability and recommended that offerors conduct this
Capacity Review [1]. review with their subcontractors prior to the

government's in-plant review [1].
Purpose - The SDCCR is intended to review
anid assess an offeror's specific capability and Review Areas and Factors - The SDCCR is
capacity to develop the software required on usually organized into five major areas:
a particular weapon system program as management approach, management tools,
defined in the RFP. This review process is development process, personnel resources,
designed to be incorporated as an integral and Ada technology. These areas are in turn
part of the FSD source selection process. The organized into factors as shown in Table 8-2.
review process accomplishes three related Other factors may be added to this review as
objectives. First, the acquisition manage- a function of unique program requirements.
ment team gains an understanding of the
offeror's software development methods and Team Composition - The SDCCR is per-
tools. Second, the capability and capacity of formed by the source selection team. This
the offeror to develop the required software approach is fundamental to achieving the
in a disciplined software development process multiple objectives of the SDCCR. The usual
is determined. Third, the review process team composition is as follows:
elicits a ccntractual commitment by the of-
feror to implement the methods, tools, prac- (a) Team Chief- Computer resources systems
tices and procedures which form the engineer or senior software engineer from the
discipline and structure for this software engineering staff;
development process [1].

(b) Program Manager/Project Manager;
Process Summary - The SDCCR process is
accomplished during the FSD RFP prepara- (c) Software Manager;
tion and source selection phase. The RFP
includes the requirement that the offeror (d) Software Engineer;
team provides specific information describing
their software development methods, and in- (e) Contracting Officer;
clude examples of how the methods have been
applied on past or on-going programs. The For smaller programs, it is possible for one
SDCCR source selection team reviews this individual to perform the program/project
information and then conducts an in-plant and software management role, and one in-
review with the offeror's team. This review is dividual to perform the chief/lead and
based on a specific set of SDCCR questions software engineering role. In addition, it is
which are provided with the RFP to the of- desirable to include the following participa-
ferors and are found in Attachment 4 of ASD tion on the team:
Pamphlet 800-5. Following this one to two
day in-plant review, the offeror's capability (a) Product and Quality Assurance;
and capacity to develop the required software
is assessed using the predefined RFP stand- (b) Configuration Data Management;
ards. This evaluation becomes an integral part
of the program source selection and forms (c) Logistics;

8-13

Chapter 8 Planning for Computer Software

(d) Cost Analyst; Division, and the Army Communications and
Electronics Command [2].

(e) Defense Contract Management Com-
mand (DCMC) personnel. Purpose -The SCE is the Software Engineer-

ing Institute's (SEI's) method for assessing a
It is recognized that too large a team is contractor's software engineering capability
counterproductive. The key is to perform the [2]. It is used during the source selection and
review with a small, knowledgeable group of contract monitoring phases of software-inten-
software experienced acquisition personnel. sive or software-critical system acquisitions.

8.6.3.6 Software Capability Evaluation The SCE augments the acquisition process by
determining a contractor's strengths and

Another method of assessing the contractor's weaknesses with respect to a maturity model.
software engineering capability is the In addition, it establishes "software capability"
Software Capability Evaluation (SCE). The as a criterion for source selection by providing
method has been used in competitive bids for an orderly way of comparing offerors'
programs at the Naval Air Development Cen- software capability against a standard set of
ter, the Air Force Electronic Systems criteria. This is an important advantage. This

T method should be used to augment currentMANAGEMENT APPROACHsoreslcinad otat
Management Organization source selection and contract monitoring
Software Management System software risk assessment steps.
Software Configuration Management
Software System Organizationa and Structure
Softwae Subcontracting The SEI, with help from the MITRE Corpora-
Software Planning tion, developed this method for the U. S. Air
Software Quality/Product Assurance
Contract Control Methods Force. It was motivated by the increasing

MANAGEMENT TOOLS importance of software in DOD acquisitions
-Internal Management Standards and Tools
Software Size, Manpower, Schedule, and Cost and the need for 'le services to evaluate more

Estimating effectively software contractors' abilities to
-Contract Work Breakdown Structure (CWBS) perform software engineering.
- Software Work Definition
- Schedule Definition and Statusing
- Software Cost Performance Reporting System The SEI is striving toward two major goals in

DEVELOPMENT PROCESS this effort:
- Internal Development Standards and Procedures
- Software Engineering

Software Development Tools and Facilities (a) providing a standardized software process
- Software Test and Verification
- Software Documentation Approach evaluation method which is documented,
- Internal Independent Verification and Validation available for review and comment, and peri-

PERSONNEL RESOURCES odically modified as experience is gained with
- Estimating Software Personnel Requirements
- Manpower Needs and Qualifications its use;
- Managing Software Personnel Resources

Company Workload Profile
Ada TECHNOLOGY (b) making that evaluation a public process

-Management Process which is defined in advance and for which
- Development Process and Environment (Tool Set) contractors can prepare.

Design Process and Methodology
- Personnel Skills and Qualifications
- Capability Demonstration and Risk Management By enabling a consistent measurement of

Table 8-2 SDCCR Factors contractors' software development capability,

8-14

Chapter 8 Planning for Computer Softlare

the SCE method should improve contractor
and acquisition management. CapabitYa

Evaluation Offerors

Team Aed
Process Summary - The Program Manager E/ ojc-lit- o 1Poetlist for
and the Procuring Contracting Officer in- n-Plant Review]

clude SCE wording in the Source Selection
Plan and the RFP. They also ensure that Requests

proper training in SCE is provided to acquisi- Initial SCE 1
tion personnel and the Capability Evaluation Response Requested
Team (CET). In their proposals the offerors In-Plant Documen-
will respond to an SCE questionnaire and Review

provide a list of candidate projects, in the Meeting I

Prgam Procuring --C-
Man (Contracting F(man~age [Findings!""

Officer SSEB \

SSource Selection Plan or
SSAC /________ __ ____- ./

SCE Method & Questions

Fig. 8-4 SCE in the In-Plant Review
Request for Proposal -- the In-Plant Review the CET will submit a

Coste & report of their findings for the SSAC. TheJ_ Technical

-r- Proposal report addresses key software areas such as
Selection I I -project management, software quality as-

Eval Ler)surance, and configuration management (Fig-
Board .'/-.o i ure 8-5)."---J [~Project ! -

Profiles -

- -irCapability" uce

SCE Capabilit / Selection
Questionne Team Evaluation

Responses Board• . •' \' Board

/Ca2p.abilri tj\
Evaluation 1KTeam C_ -S TEa Technical
___.....__________ -__-"_[Findings I '.... and Cost

Fig. 8-3 SCE in the RFP - Findings
I

form of "project profiles", for evaluation
during the CET's In-Plant Review (Figure "Source Source' , Source

8-3) [3]. Selection . Selection
Advisory Authority /

•. Council
After the CET reviews the responses to the
questionnaire and the listing of candidate
projects, four projects are selected for the Management, Technical

In-Plant Review. An agenda and any requests and Cost Evaluation:
SCE Risk Assessment

for further documentation are sent to the of-
feror before the CET visit (Figure 8-4). After Fig. 8-5 Indicating Program Risk

8-15

Chapter 8 Planning for Computer Software

8.7 REFERENCES 87-TR-23 Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA,

1. ASD Pamphlet 800-5, Softwae Develop- Preliminary Version, Sep, 1987.
ment Capability and Capacity Review, HQ
Aeronautical Systems Division, Wright-Pat- 3. Johnson, Albert, Software Capability
terson AFB, Ohio 45433, 10 Sep 1987. Evaluation Implementation Handbook:

Source Selection, Draft VO.21, Software En-
2. Humphrey , W. S. , et al., A Method for gineering Institute, Carnegie Mellon Univer-
Assessing the Software Engineering Capability sity, Pittsburgh, PA, February 9, 1990.
of Contractors, Technical Report SMU/SEI-

8-16

Chapter 9 Management Principles

CLAMnER 9

MANAGEMENT PRINCIPLES

9.1 INTRODUCTION

Managing software development is one of the blems are beyond the control of the PM. For
biggest challenges facing today's government example, there is very little a PM can do about
program manager (PM). The classic changing or growing requirements because of
problems contributing to this challenge are an evolving threat, or fuzzy requirements be-
illustrated in Figure 9-1. Some of these pro- cause of lack of details on the threat. Long

REQMTS S--

r•.Zy,••• ------ •. REMTS

REOMTS
.R/. EOWMJ MPLEXITY

GROWTH COMPLEXITY RESULTS
UNKNOWN

S. QUALITY LATE DEUVERY

HARDWARE FOR
TRNARDWARTEST DOCUMENTATION COST OVERRUNSS(.. = POOR

ENVIRONMENTS POOR PERFORMANCE

. .CK POOR POOR MAINTENANCE

DISCIPLINE VISIBILITY

POOR
COMMUNICATION

PLNING

Fig. 9-1 Classic Software Development Problems

9-1

Chapter 9 MWragement Principles

lead times often force systems development be accepted and practiced by the software
to be initiated before the threat has been developer. Mere proposal promises and con-
completely evaluated. Shooting at a moving tractual language are not sufficient. To
target of changing or evolving requirements is achieve quality software which performs to
a reality of all new systems acquisitions. specifications, is reliable, and is reasonably

priced, these methods must be ingrained in
There are, however, many problems which the contractor's software organization. Table
can be minimized or eliminated by the PM. 9-1 lists some of the proven methods for
For example, there are certain actions that software development.
can be taken by a PM to eliminate poor en-
gineering discipline, poor documentation, or All engineering disciplines develop tools and
poor planning. This chapter will address aids to help the practitioner apply engineering
methods and principles which can help a PM theory. Because software engineering is a
deal with the complexity and difficulty of large relatively young discipline, it doesn't have the
scale software system development. In deal- wealth of tools so readily available to its older
ing with these problems, the common sister disciplines. Much progress is being
denominator is a disciplined system engineer- made, however, and currently available tools
ing approach incorporating the principles of and aids include:
software engineering.

(a) St,'uctured design and programming;
9.2 SOFTWARE ENGINEERING

(b) Inspections and walkthroughs;
As mentioned in Chapter 2, the term software
engineering is relatively new. Today there is (c) Computer aided software engineering;
some debate as to what constitutes software
engineering, but most people agree that ap- (d) Program design languages;
plying the term software engineering to the
software development process implies: . VAsible Training and Education Program

* Institutionalized Practices and Procedures

(a) The application of proven methods at each 9 Defined Roles With Systems, Hardware, and

step of the process, including accepted prac- Test Organizations

tices, standards and procedures; * Adherence to a Software Development Plan

(b) The development and use of software * Institutionalized Internal Inspection Procedures

tools and aids; * Structured Design and Programming

e Product Oriented WBS for Financial Control
(c) The generation of specific documents
during the various stages of the development . Internal Independent Verification and Valiciation (IV&V)

process; e Strong Configuration Management

- Software Development Ubrary
(d) A traceable path from the system require- - Problem/Trouble Reporting System

ments down to the final deliverable product.
* Visible Status Information

For these proven methods to be effective in Table 9-I Proven Methods for Software
controlling software development, they must Development

9-2

Chapter 9 Management Principles

(e) The Ada programming language; principles which place software development
in the perspective of the overall picture of

(f) Object Oriented Design and Program- system development:
ming.

(a) When planning and directing a program,
Documenting each step of tie software PMs must make decisions based on a "system"
development process is absolutely essential. perspective. They must review their alterna-
Not only does one need an effective way to tives and not allow either hardware or
communicate the rate of progress, one also software to exclusively drive their decision.
needs a well-documented final product. All decisions must consider long term system
Since documentation is the only tangible effects.
evidence of the resulting product, documen-
tation must be generated as one progresses (b) PMs must provide a forum for integrating
through the various stages of software the system development. Several techniques
development. One cannot do a very effective are available and should be part of both the
jot) of generating software documentation government's and the contractor's review
after the fact. process. These techniques include stringent

interface controls, reviews, and audits. All
One must have a clearly defined path from the interfaces between software modules and be-

top level system requirements down to the tween software and hardware must be clearly
various modules or units of code. This en- defined and strenuously controlled. Techni-
sures that the delivered product satisfies the ques such as reviews and audits will be dis-
system requirements. It can be accomplished cussed in the next section.
through the use of a requirements' matrix
which shows how each system level require- (c) Large investments up front can have sig-
ment is satisfied by a particular module or nificant leverage on reducing later system
segment of code. This process can be operation and support costs. Investing resour-
automated. ces during the system and software require-

ments analysis phases can result in a better
9.3 GIUIDELINES AND RULES understanding of the user's requirements and

a more stable baseline for design. Early ex-
Over the past 30 years, certain guidelines and penditure of resources also provides the
rules have evolved to help a PM successfully greatest amount of leverage in preventing er-
complete a software development program. rors. The bulk of the errors (30% to 70%) can
One must keep in mind that the guidelines be detected during the time when error cor-
and rules given below are not just recipes or rection is the cheapest [2].
checklists to be blindly followed in order to
ensure success. PMs must understand how to (d) Software resource planning must remain
customize these guidelines and rules to the stable once the program starts. Software
requirements of the program. They may development has an inherent resource and
choose to ignore any one of them as long as schedule profile which means that the overall
they are aware of the risks and hive planned schedule cannot be stretched out without ad-
for dealing with them. The following versely affecting software development.
guidelines provide the PM with software More important, squeezing the schedule can
development planning and organizational be a prescription for disaster. It is not always

9-3

Chapter 9 Management Principles

possible to add manpower to solve a software (h) PMs must plan for growth and evolution.
schedule slip [3]. Experience has shown that the user cannot

initially handle all of the new functions at
(e) The software architecture should be the once, even if the developers can deliver it [4].
major driver in determining hardware par- Fox cites the example of the Apollo comrmand
titioning. In the past, PMs paid more atten- and control system developed by IBM. When
tion to hardware because they understood it the program manager was asked why there
best. Today the PM must consider the real- were over fourteen (14) releases to the
time requirements of the system and whether software, he replied that there were two major
parallel processing and/or distributed reasons for this. First, the hundreds of
processing will meet the overall require- operators monitoring consoles and interact-
ments. The software architecture will often ing with the computer could not absorb
drive the hardware architecture. operating procedures in big doses -- they had

to absorb them a piece at a time. Capability is
(f) Identification of the software architecture best provided piecemeal. Second, they couid
should be performed simultaneously with the not predict very far in advance what the users
requirements definition and systems analysis would want or what would be needed in the
tasks. To accomplish adequate hardware and control system [4]. The software architecture
software tradeoffs, the software must be and implementation, therefore, should be
viewed not only as the system integrator but specifically pointed toward maximum
as a system in its own right. Software develop- modularity, changeability, and growth poten-
ment is usually in the critical path of the over- tial. The PM's primary concern should be life
all system development. cycle cost. Post deployment software support

needs to be examined early during develop-
(g) The PM should stimulate innovation and ment to provide for cost effective lifetime
not be stifled by rules and regulation. support.
'Thought first, regulations second" should be
the theme pursued by all system managers. (i) The procurement process should allow for
New approaches should not be surreptitiously a flexible, robust, and expandable software
dismissed. DOD-STD-2167A, "Defense Sys- design. Ways must be found to reward innoa-
tern Software Development," is only a start and tive contractors. Some suggestions are to
better approaches will evolve. This is not to consider award fees or cost incentives based
say that DOD-STD-2167A stifles innovation, on post-delivery operation and support. The
Although the standard embraces the "water- fees or incentives could be based on the ability
fall" approach to the software development to perform the intended functions, ease of
process, it does allow for other advances such support, ease of modification, utility of
as rapid prototyping, evolutionary develop- documentation, and effectiveness of the
ment, and other process models. In practice, human interfaces. The intent should be to
the waterfall model is best suited for "prece- force the developer to focus on long term
dented" systems (i.e., systems that have been goals and a supportable system. Also impor-
developed at least once). For "unprece- tant, but more difficult to identify, are the
dented" systems, or systems that are totally front end decisions and methods that achieve
new, other models such as Boehm's "spiral" these goals. What the developer does in the
model may be more appropriate. beginning has the most influence on the end

9-4

Chapter 9 Management Pt Inciples

Is a mechanism used for ensuring traceability between the software top-level and detailed designs?

Are internal software design reviews conducted?

Is a mechanism used for controlling changes to the software design?

Is a mechanism used for ensuring traceability between detailed design and code?

Are formal records maintained of unit (module) development progress?

Are software code reviews conducted?

Is a mechanism used for controlling changes to the code?

(Who can make changes and under which circumstances?)

Is a mechanism used for configuration management of the software tools used in the

development process?

Is a mechanism used for verifying that the samples examined by the software QA are truly

representative of the work performed?

Is there a mechanism for assuring the regression testing is routinely performed?

Is there a mechanism for assuring the adequacy of regression testing?

Table 9-2 Process Control

product. The developer must begin with a philosophy, methodology, procedures, and
good process already in place. standards for doing business. Process control

and process management are principles of the
9.4 PROCESS CONTROL Deming philosophy (6] for customer satisfac-

tion. Application of Deming's philosophy re-
Process control is the key to achieving quires the commitment of top management.
software quality. The process is the method That is why it is so important to select the right
used by the contractor for developing contractor; these values are not learned over-
software. Achieving control of the process night.
means that the process is predictable and
measurable. A controlled process will mini- What follows are some program management
mize variability. How does a PM assess the guidelines which focus on the day-to-day
contractor's process control system and pro- management of software development.
cedures? Table 9-2 provides a series of ques-
tions developed by the Software Engineering All Software Tasks Must be Discrete - This
Institute [5] as an aid in making this assess- guideline is fundamental in determining how
ment. The PM must know that the process well the contractor can plan the effort. PMs
represents the contractor's commitment, must not allow level of effort or percentage

9-5

Chapter 9 Management Principles

complete approaches because this closes the Milestone II. Risk management is an ongoing
door on program progress visibility. The con- process. The first step is to identify risk areas,
tractor must be able to define the work pack- document them in the Software Development
ages associated with the work breakdown PI,.n, and devise a schene for dealing with
structure (WBS) in sufficient detail to control each risk item. These items are then tracked
and manage the effort. Each task should have throughout development. A convenient
a definite start, a definite end date, and a method is to have a "'op Ten" list of risk areas
specific output. These tasks are normally on that are tracked at least on a monthly basis
the order of 30 to 90 man-days in duration, along with a contingency plan for mitigating
Planning is usually accomplished as a rolling the identified risks. The plan should establish
wave, the immediate six months or more are risk reduction objectives and schedules, as-
planned in detail with the remaining effort sign responsibility and priority for risk reduc-
generally only visible at higher levels in the tion tasks, and develop a method for periodic
WBS. The entire effort should be totally reviews and assessments. Various manage-
scoped in time and resources at the very ment techniques to reduce risks have already
beginning of the project. If the program un- been mentioned and include:
certainties are too great, this may not be pos-
sible. (a) Rapid prototyping;

Quantitative Requirements are Managed (b) Incremental development;
Through Margins - Quantitative require-
ments lend themselves to measurable control (c) Internal (government) program reviews
methods. Computer memory and through- (at least monthly);
pit, for example, are often tracked during
,2..velopment. In the beginniing, estimates of (d) Top Ten list review;
software size and timing will be made and
compared against target values to determine (e) Early demonstrations and testing of risk
margins. Later, design language estimates items;
can be made and these estimates will continue
through the design process. As code is writ- (f) Government inspections and audits of the
ten, actual measurements can be made. Early software development process.
planning should allow for contractor and
government margins with the use of a dis- Some potential problem areas include:
ciplined and documented control system.
One approach is to baseline an estimate of the (a) Unrealistic cost and schedule;
memory and throughput utilization on a
month!y basis. An alert or trigger threshold (b) Vague or incomplete requirements;
value can initiate action should the threshold
values be exceeded. (c) Inexperienced developers;

Identify and Track Risk Areas - The contrac- (d) Inadequate development environment
tor and PM should be working as a team to (tools and methodology).
manage program risk. An important in-
gredient of any program is to assess and Identify and Track Special Interest Items -
reduce the risk as early as possible and before Special interest items such as Government

9-6

Chapter 9 Management Principles

Furnished Items (hardware, software and STD-15211B, Technical Reviews andAudits for
data) and subcontract items should also be Systems, Equipments, and Computer Software,
tracked. Any items delivered to the contrac- provides guidance on preparing checklists for
tor or received from the contractor are can- various reviews. The checklists should also
didates for tracking. Certain critical internal include special interest items and risk areas.
deliveries such as code delivered for testing
are candidates as well. The same approach Formal Reviews Must be Viewed as Quality
used for tracking the risk items above can also Gates - PMs must approach the formal review
be used to track special interest items. as a checkpoint for determining whether or

not the project is ready to proceed to the next
Requirements Must be Testable and Trace- phase. A contractor should not be allowed to
able - Requirements must be testable in order complete a design review if it hasn't satisfied
to validate the system performance. In some all the requirements imposed by the design
cases, actual testing may be impractical due to review. If the PM decides to proceed to the
physical constraints, cost, or other considera- next phase with a less than satisfactory techni-
tions. When this is the case, system perfor- cal review, because of political or schedule
mance must be validated through inference or considerations, the risks involved must be
analysis and reflected in a testability matrix, known and a contingency plan developed.
Traceability is a key factor throughout Too often, however, the risks are much higher
development and becomes even more impor- than perceived. It is essential to have a stable
tant during follow-on support. Requirements baseline since early mistakes become much
must be traceable from the system specifica- harder and costlier (in time and money) to
tion down through design, integration testing correct when they are discovered late in the
and DT&E. Traceability must occur in both development process. Proceeding before one
directions--results of a test report must track is ready, usually increases the program risk.
back to the requirements. The only effective
way to handle this for large programs is Conduct Periodic Inspections and Audits -
through some form of automation. Periodic government inspections and audits
Requirements' traceability should be an in- can be useful when applied consistently.
tegral part of the contractor's configuration Despite the fact that auditors can be frequent-
management process. ly wrong in their assessments, the audit is an

essential tool of managements. Whether the
Use Checklists for Design Reviews - Without audit is right or wrong, the very process of
adequate preparation design reviews can be- having an audit imposes discipline on the or-
come nothing more than hectic "dog and pony ganization. Ideas on organization, design, and
shows." Design Reviews should be a major process are interchanged. Often the project or
part of the software quality program. Pro- program improves because of the intensified
gram office personnel should be prepared for attention [4]. Inspections generally use a
a review by arming themselves with ap- checklist to determine the specification and
propriatt analyses and a checklist of impor- design completeness. Audits are similar to
tant and critical questions and adhering as inspections with the additional factor of
much, as possible, to an agreed to formal determining requirements' traceability.
agenda. The PM must do his homework These techniques can be valuable when ap-
through verification and analyses of critical plied to the interfaces. What better way to
areas that support the design approach. MIL- integrate the system than to ensure that the

9-7

Chapter 9 Management Principles

hardware and software properly communi- integration will be difficult to diagnose since
cate with each other? In addition to inspec- they may be in either component--hardware
tions, the contractor should conduct or software. Integration of critical system
walkthroughs as a standard business practice components should be closely tracked
[7]. When conducting inspections and throughout the development process.
walkthroughs, it is important that the contrac-
tor establish clear entry and exit criteria. 9.5 REQUIREMENTS / PROTOTYPING

Use Statistics Generated by Contractor In- The PM can have a major impact on the suc-
ternal Reviews - The contractor must have a cess of the program during the requirements
system in place that includes a method for definition phase. Investment of time and
assessing the quality and progress of the work. resources in requirements definition has the
The Software Development Plan should iden- biggest schedule and cost payoffs. Clear and
tify the software development system and in- unambiguous requirements. however, seem
dicate how government visibility will be to be an elusive ingredient in any program.
provided. This is accomplished by contrac- Since software development is an intellectual
tually requiring the developer to provide the process that must be captured in some tan-
assessment data to the program office. The gible form, how does one approach require-
purpose is not for the government to manage ments definitions? Two tools available to aid
the contractor's work (that's the contractor's the process are formal specification develop-
job) but to communicate program develop- ment tools and rapid prototyping.
ment status and product quality. The contrac-
tor should gather statistics from the internal 9.5.1 Specification Development Tools
walkthroughs and inspections and use this
data to manage the software development. Specifications are generally written in prose
The contractor's mechanism for software and they suffer from significant interpretation
development constitutes the process control and traceability problems. They are also very
system. A software process control system is error prone. Formal specification develop-
analogous to a manufacturing process control. ment tools are designed to alleviate these

problems. Because a formal specification
Integration Must be Visible on M:.ster language is much more specific than prose, it
Schedule - Integration brings the interfaces can be automated. This provides the use of
together. They occur at all levels: software to computer assistance to check for errors, con-
software, software to hardware and software pleteness, consistency, and traceability.
to systems. Integration and integration testing Some commonly used formal specification
must be planned and be highly visible to the development tools are:
government PM. The development of
hardware and software must be approached PSL/PSA: Problem Statement Lan-
as a maturing process strategy. Pieces of the guage/Problem Statement Analyzer. This
system should be brought together in a tool was originally developed for data
planned, logical fashion. Some level of con- processing applications. It is widely used in
fidence in the hardware and software coin- other applications [8].
ponents must be established before
proceeding with higher level integration. If RSL/REVS: Requirements Statement Lan-
this isn't done, problems that occur during guage/Requirements Engineering Validation

9-8

Chapter 9 Management Principles

System. This is a real-time process control beginning. The PM should incorporate rapid
tool [9]. prototyping as part of the contract.

SADT: Structured Analysis and Design Tech- A software rapid prototype is an analytical
nique. This tool analyzes the interconnecting tool for refining software requirements. It is
structure of any large, complex systems. It is used during the requirements analysis phase
not restricted to software systems [10]. with minimal constraints on choice of

programming languages, documentation, and
SSA: Structured System Analysis. The Gane use of standards. In essence, it entails the
and Sarson version is used in data processing almost unconstrained development of a
applications that have database require- software package with the primary goal of
ments. The DeMarco version is suited to data achieving quick results.
flow analysis of software systems [11,12]. The objective is to compare these quick

results with the initial system requirements.
Gist: Textural language developed at USC/In- By allowing the user a quick look at the poten-
formation Sciences Institute. This tool is use- tial end product, they will be better able to
ful for developing object-oriented answer the questions "Is this what you
specifications and designs. It is a refinement wanted?" or "Is this what you meant?"
of specifications into source code [13]. Documentation is minimal and it is not

deliverable. Once a decision is made to
9.5.2 Rapid Prototyping deliver, it ceases to be a rapid prototype. This

is analogous to the hardware requirements
Rapid prototyping may be the most powerful and design process of using engineering
tool available to analyze and refine require- models, breadboards and brassboards. This is
ments and should be encouraged as a not to say that one would not use an approach
requirements' definition tool from the very of developing software using a "prototype" (as

S SYSTEM
REQUIREMENTS]

SOFTWARE

REU IRE ME N TS

SYSTEM

DESIGN

D ET AI AI IN NTEGRAT OND CODE TEST

D A COD o INTEGRATION .-----
DESIGN TEST

DETAIL 1 OEINTE GRATIO0N

.. DESIGN TES.....T SYSTE- I
TEST. .

- . -QUALIFICATION

OPERATIONS

Fig. 9-2 Incremental Development

9-9

Chapter 9 Management Principles

opposed to a "rapid prototype") for delivery Operational Flight Program (OFP) may be
and operation. This is yet another method designed and developed in three increments.
called evolutionary development and it will be
discussed later in this chapter. The value of a This incremental approach must be pre-
rapid prototype is in the capability to better planned with the overall development
communicate software requirements during strategy and test plan. The first system level
the requirements analysis process. What bet- capability to be demonstrated is the capability
ter way to communicate with the users than to to fly from point "A" to point "B". This re-
present them with an artifact that represents quires the appropriate planning for develop-
the system? Often the rapid prototype will ing and integrating both hardware and
represent the user interface (controls and dis- software components in support of the
plays) providing for both input and output. It scheduled events. The first increment would
may execute representative scenarios or have the basic flight control, navigation,
operational profiles to determine the validity guidance, and task control funtions. The
of the specifications. The prototype can be next increment would add the system
used throughout development, including Full capability for multiple re-entry vehicle
Scale Development, to test out design con- deployment. Again, meticulous planning
cepts as well as develop a priori test results for would have preceded this activity to make
future testing of the actual product. One must sure that the appropriate hardware and
remember that a rapid prototype does nao software components are designed and
evolve into a deliverable software product. It developed on an integrated schedule. For the
should be discarded once it has been used to software, this second increment or "build"
revise and refine the requirements. would have the same capabilities as the first

increment plus the capability to deploy multi-
9.5.3 Incremental and Evolutionary pie re-entry vehicles during a flight. The final
Development software increment may contain maintenance

diagnostic capability and continuous naviga-
Incremental and evolutionary development tion instrument calibration capability. One
are techniques for dealing with large, complex begins with a minimal program and then adds
systems. Figure 9-2 illustrates incremental additional capability until the complete sys-
development. Design begins after the system tern is developed.
and software requirements have been
baselined. Evolutionary development is very similar to

incremental development but it is more long
The objective of incremental development is term. While incremental development oc-
to produce a complex software product by curs during a single development phase, typi-
building the total system capability in ever cally during FSD, evolutionary development
increasing increments. The second software can occur over several phases or be part of a
delivery or increment will have more pre-planned product improvement approach.
capability than the first delivery, the third Evolutionary development is the recom-
more than the second and so on. As the saying mended approach for large Command, Con-
goes "If you have to eat an elephant, eat him trol, Communications and Intelligence (C 3I)
one bite at a time." Software development for systems. Rapid prototyping can be combined
Inter-Continental Ballistic Missiles (ICBMs), with this approach to help define the require-
for example, is developed this way. The ments. The evolutionary approach helps to

9-10

Chapter 9 Management Principles

deal with "fuzzy" requirements where the 9.6 SUMMARY
general requirements are known but the
details are lacking. For example, in a large The problems associated with managing
C31 program the PM may know that he must software development can be overwhelming.
design a system to communicate with multiple But one must never forget that software
users, be able to react to rapidly changing development is manageable. This chapter
threats, and be able to adapt to the environ- has discussed some of the tools available to
ment in real-time. lie may not, however, the program manager to help in planning a
know the requirements of all the users, who development strategy as well as assisting in
may in turn not know themselves until they the daily management of the program. The
are able to work with the actual equipment in Program Management Checklist in Figure 9-3
a scenario or simulated environment. The serves as an additional reminder of the key
evolutionary development approach would elements that have been discussed
develop an early model with flexibility and throughout this text.
growth specifically as part of its design. This
model would then be used under actual or 9.7 REFERENCES
simulated conditions to provide feedback to
update the requirements. This approach 1. Fairley, Richard E., Software Engineering
could continue indefinitely. Concepts, Tyngsboro, Mass., McGraw Hill

Book Co., 1985.
Plan

- Cost and schedule 2. McCabe, Thomas J. and G. Gordon Schul-
- Development and support meyer, "The Pareto Principle Applied to

Select tangible inchstones Software Quality Assurance," Handbook of
Review schedule after requirements are defined Software Quality Assurance, Ed. G. Gordon
Scrub requirements Schulmeyer and James I. McManus, New
Build rapid prototypes York, NY, Van Norstrand Reinhold Comn-
Create/Update software size and cost estimates pany Inc., 1987.
Design within the system's constraints

Don't let hardware needlessly constrain software 3. Brooks, Frederick P., 77te MyIthical Man-
dclopmint Month: E.suya on Software Engitneering, Ad-

Establish CRW(; and provide software support dison Wesley, July 1978, Second Printing.
Beware of government furnished products and

subcontracts 4. Fox, Joseph M., Software anid Its Dei'elop-
Strongly consider incremental development for ment, Prentice-I-Hall, Inc., Englewood Cliffs,

large systems NJ, 1982.

Create and manage schedule, memory,

throughput margins 5. Software Engineering Institute, A Method
Understanm' the contractor's development for Assessing t/ze Software Engineering

process Capability of Contractors, September 1987.
Establish an internal control system

Use software metrics 6. DIeming, W. Edwards, Out ofthe Crisis, MIT
Select resources and language Center for Advanced Engineering Study,

Fig. 9-3 Program Management Checklist Cambridge, MA, 1989.

9-11

Chapter 9 Management Principles

7. Fagan, M., "Design and Code Inspections to 10. Ross, D., "Structured Analysis (SA): A
Reduce Errors in Program Development," Language for Communicating Ideas", Trans-
IBM Journal, Vol. 15, No.3, 1976. actions Software Engineering, Vol. SE-3, No.

1, January 1977.
8. Teichow, D. and Hershey, E., "PSUPSA: A
Computer Aided Technique for Structured 11. Gane, C. and T. Sarson, Structured Systems
Documentation and Analysis of Information Analysis: Tools and Techniques, Prentice-
Processing Systems," Transactions Software Hall, Englewood Cliffs, NJ, 1972.
Engineering, Vol. SE-3, No. 1, January 1977.

12. DeMarco, T., Structured Analysis and Sys-
9. Alford, M., "A Requirements Engineering tcm Specification, Yourdon Press, NY, 1978.
Methodology of Real-Time Processing Re-
quirements," Transactions Software Engineer- 13. Balzer, R., Gist Final Report, Information
ing, Vol. SE-3, No. 1, January 1977. Sciences Institute, USC, February 1981.

9-12

Chapter 10 Software Configuration Management

CHAIPTER 10

SOFTWARE CONFIGURATION
MANAGEMENT

10.1 INTRODUCTION

The dictionary defines configuration as the identify the software configuration con-
"relative disposition of the parts or elements ponents of a system for the purpose of sys-
of an item" and defines management as the tematically controlling changes to the
"act or manner of handling, directing, or con- configuration and maintaining the integrity
trolling" [1]. Configuration management and traceability of that configuration
(CM), then, can be generally defined as the throughout the system life cycle. This chapter
act of controlling all elements of a particular explains the basic elements of SCM and shows
item. When applied to weapon systems, CM how the application of these elements to the
is the system engineering management software development cycle facilitates the
process that: creates the system components, transformation of software into a visible and
identifies the functional and physical charac- manageable entity [3]. Figure 10-1 illustrates
teristics of those components, controls chan- the interrelationship of the four functions of
ges to those characteristics, and records the SCM: identification, control, status account-
status of any changes implemented. It is the ing, and audits [4].
means through which the integrity and con-
tinuity of design, engineering, and cost The developer (a contractor or another
tradeoff decisions made between technical government agency) and the government
performance, producibility, operability, and procuring agency both apply CM procedures
supportability are reported, communicated, to a specific development program. This
and controlled [2]. chapter concentrates on CM practices as

described in DOD-STD-480A, Configuration
Software configuration management (SCM) Control, Engineering Changes, Deviations, and
is formally defined as the process used to Waivers, MIL-STD-483A, Configuration

10-1

Chapter 10 Software Configuration Management

Management Practices for Systems, Equip- Software configuration identification means
ment, Munitions, and Computer Resources and specifying and identifying all system software
DOD-STD-2167A, Defense System Software components throughout its life cycle, from the
Development. development of specifications to the genera-

tion of actual code [4]. The definition of
10.2 CONFIGURATION IDENTIFICA- Computer Software Configuration Items
TION (CSCIs), along with their functional and

physical characteristics, normally occurs
Configuration identification determines how during the Demonstration and Validation
to divide the software system for ease in (D/V) phase of the acquisition life cycle and
managing and controlling change. A system prior to the System Design Review (SDR).
comprises a physical and a functional con- MIL-STD-483A, Appendix XVII, provides

CONFIGURATION MANAGEMENT

Does the system satisfy AUDIT the stated needs ?

STATUS
What changes have been made ACCOUNTING to the system ?

How do I control changes CONTROL to the system ?

What is the system IDENTIFICATION configuration ?

Fig. 10-1 Configuration Management Functions

figuration. Physical Configuration refers to the following guidance for selecting con-
the detailed design or physical attributes and figuration items (CIs):
it is normally described by hardware drawings
and software code listings. Functional Con- (a) Select CIs based on functional and perfor-
figuration refers to the functions a system or mance parameters which must be controlled
unit performs and it is primarily established to satisfy an overall end use function (e.g.,
by hardware and software requirements' defensive avionics system software);
documents [3]. The functional description of
software is documented in interface specifica- (b) Select Cls which require an optimum level
tions, product description, test procedure and of government control during acquisition
detailed design specifications. (e.g., code verification software);

10-2

Chapter 10 Software Configuration Management

(c) Select Cls based on the need to control Care must be taken when selecting the num-
their inherent characteristics or to control ber of configuration items. Too many con-
their interface with other Cls (e.g., controls figuration items may increase the
and displays software); management and administrative efforts re-

quired to adequately track and control the
(d) When selectingCls, evaluate other factors status of the CSCIs. This additional effort
such as schedule, the engineering release sys- may delay the schedule and increase the cost
tem, financial impact, and new, modified, or of the software development. On the other
existing design parameters. hand, too few CSCIs may minimize the pro-

gram office's visibility into the software
The process of configuration identification development process, tend to reduce control
provides a way to isolate system components of the software design and possibly lead to
to control their development. There are four operational deficiencies.
steps to software configuration identification.
First, the software system is broken down into While the process of CI decomposition allows
a number of known manageable parts or for the management of small units, one should
CSCIs. Second, these CSCIs are uniquely remember that software, like hardware, is a
named. Third, as these parts change with time, sum of its parts and must be managed from a
the various versions that appear are uniquely system approach. CM is the primary respon-
identified. Fourth a change control process is sibility of the program office. Unfortunately,
instituted to ensure knowledge and control of in many program offices the CM function be-
all changes that occur throughout the lifecycle comes a low priority task managed by a
of the program. The first step is closely as- caretaker group and is not considered an in-
sociated with the processes of specification, tegral participant in the daily management of
analysis, and design. Steps two and three re- the program. Because of this, the Program
quire rigorous enforcement of step four, Manager (PM), as well as other functional
standards and procedures. Figure 10-2 repre- managers, may inadvertently affect the con-
sents a generic breakdown of a software sys- figuration of the system in their routine inter-
tern into various CSCIs, computer software faces with the developer. There should be a
components (CSCs), and computer software strong relationship between the CM and
units (CSUs). The contractor will normally other functional areas in the program office.
propose a list of CSCIs based on the Request
For Proposal (RFP) Work Breakdown Struc- 10.3 CONFIGURATION CONTROL
ture (WBS), the design requirements,
management structure, and available resour- Once the system configuration is established,
ces. This structure of CSCIs should be the next step is to establish a method to
reflected in the contractor's Software manage and control changes. Unlike
Development Plan (SDP) and Configuration hardware, software is an intangible product
Management Plan (CMP). The contractor's difficult to "see" and more difficult to manage.
CM methodology is documented in the CMP. Software can still be properly managed, how-
The CMP and SDP are normally deliverables ever, by applying configuration control
on software programs. They are presented for methods to the development process and on
approval to the government in accordance the products of that process. Edward Bersoff
with the provisions of the Contract Data Re- defines software configuration control as
quirements List (CDRL). "...the orchestration of the processes by which

10-3

Chapter 10 Software Configuratlon Management

SYSTEM

SEGMENT SEGMENT
(SSS) (SSS)

CSCI [HWCI HWCI

(SRS) IRS (PIDS) (PIDS)

'C - _JW IDS

(R)PIDsc) (PIDS (CHDS,

(SRR)..HW.C

C C CS CSU CSC

(CSU (SU (CSU

LEGEND

CIDS Critical Item Development Spec PIDS Prime Item Development Spec
0SC Computer Software Component SSS System/Segment Spec
CSU Computer Software Unit SRS Software Requirements Spec
IRS Interface Requirements Spec

Fig. 10-2 Breakdown of Softwa,-e System

the software portion of a system can achieve software Engineering Change Proposals
and maintain visibility throughout its journey (ECPs), test asset control, test software con-
through the life cycle. It provides the tools trol, physical test item control, integration
(i.e., documentation, procedures, and an or- control, and version control.
ganizational body) to control the system im-
plementation as well as changes to it" [4]. To understand the configuration control

process, one has to understand the differences
The configuration and change control process between Class I and Class II changes. Class I
includes: interface control, baseline manage- changes effect form, fit, or function; althoughi
ment, Configuration Control Boards (CCBs), other factors, such as cost or schedule, can
Software Configuration Review Boards cause a Class I change. All Class I changes
(SCRB), Software Problem Reporting (SPR), must be submitted to the Government CCB

10-4

Chapter 10 Software Configuration Management

for approval. All other changes are Class II ment through groups such a CCB, an Interface
changes. Class II changes do not change the Control Working Group (ICWG), a Test
scope of requirements, do not effect cost, or Planning Working Group, and a Computer
change the contracted schedule. Examples of Resources Working Group (CRWG). The
Class II canges are editorial changes in contractor controls all internal interfaces to
documentation or minor changes which don't the program under development through the
affect the established baselines or the func- contractor's own configuration control
tional allocation of the CSCI. process and change management process.

For government approved Class 1, the govern- The government ICWG concerns itself with
ment must negotiate with the contractor issues external to the product such as inter-
before the change can be implemented. A operability, logistics, and operational issues.
contractor may proceed to implement a The ICWG is usually chaired by the procuring
proposed Class I change befare government agency's engineering representative and is
approval, but he proceeds at his own risk. comprised of representatives from the

development organizations, user organiza-
Class II changes only require government tions, and software support activities as shown
concurrence on the classification before the in Figure 10-3. The ICWG, in coordination
contractor may proceed with a change. This with the CRWG, define and control cuqrrent
can be accomplished by government plant and proposed software and hardware intcr-
representatives. The PM should ensure that faces, obtain and assess quantitative interface
the contractor supplies the program office data, and investigate system and subsystem
with copies of all Class I and Class II Draft inter-operability requirements.
changes as well as any Class I changes that
have been approved by local authorities. During Full Scale Development (FSD) many
MIL-STD-483A, Appendix XIV discusses programs delegate the responsibility for
software Class I and II changes. product interface control to the development

contractor. As the system matures and
10.3.1 Interface Control proceeds toward test and delivery, the govern-

An interface is the functional or physical char- Chair

acteristics which serve as a common boundary PROCURING

between two or more items. In system AGENCY

development, these boundaries are found be-
tween hardware and software, hardware and
hardware, operational communication stand- 1
ards and the system, and software and SOFTWARE DEVELOPMENT USER

software configuration items. The interfaces ORsUPPORT GEVELOMENS USR

IORGANIZAIONS ORGANIZATIONSare defined by electro-mechanical charac- ACTIVIT
teristics, reliability and maintainability re- L
quirements and software format, timing, and Fig. 10-3 Interface Control Working Group

programniIng language's requirements ment gradually assumes more of this respon-

sibility. The contractor's ICWG is usually
The program office controls all external inter- chaired by an individual from the engineering
faces that effect the system under develop- organization. Associate contractors are meta-

10-5

Chapter 10 Sollware Configuration Management

bers and the responsible DOD agency may be and a contractor's baseline is incremented to
an observer. The contractor's ICWG docu- indicate government approval of the
ments agreen.aits on CSCI interfaces and contractor's design and progress at that par-
hardware configuration item (HWCIs) inter- ticular stage. Documented deficiencies will
faces involving more than one contractor. indicate the contractor's progress toward
The contractor's ICWG should review all en- meeting the requirements' baseline. Tradi-
gineering and interface changes before sub- tionally there have been three baselines, the
mitting then to the Program Office [5]. functional, allocated, and product baselines.

The provisions of most contracts require that,
10.3.2 Baseline Management as baselines change, the system integrity be

maintained. Each baseline indicates a state of
Baseline management is the process of design that becomes progressively more
managing the derivation of the contractual restrictive and finally represents the actual
requirements into implementable functions hardware and software developed.
and the integration of those functions into a
system that demonstrates compliance with A functional baseline is typically established
these requirements. at the completion of the System Design

Review (SDR) and approval of the Type A
Within each of the development phases, system specification. Formal configuration
specific reviews (SRR, SDR, PDR, CDR) control for the system is initiated once the
have been established to examine the system specification has been approved. The
contractor's compliance with the require- allocated baseline for the system is estab-
ments of the contract and his progress toward lished once the allocated baseline for each CI
delivery of a system. This is accomplished is determined and the Software Require-
through documentation such as specifica- ments Specification (SRS) and Interface Re-
tions, design documentation, management quirements Specifications (IRS) for each
reports, and test reports. At the completion configuration item have been approved. For
of each review these documents are approved hardware, this normally occurs at the Prelimi-

CHAIR: Senior Ma,,ager (Prime)
CO-CHAIR: System Configuration Manager (Prime)

CO-CHAIR: System Configuration Manager (Vendor)

-I

PROJECT MANAGER VENDOR ADDIT!ONAL REPS

Tech Support Staff Systems Manager Senior Management
- Systems H/W Manager j Human Factors
- Hardware S/W Manager Training
- Software Program Manager Test & Evaluation

QA Manager OA Manager IV&V
H/W Config Manager H/W Config Manager I
S/W Config Manager S/W Config Manager

Senior User Reps Doc Manager

Fig. 10-4 Contractor CCB

10-6

Chapter 10 Software Configuration Management

nary Design Review (PDR). For software, control changes to the system. Figures 10-4
the allocated baseline is normally established and 10-5 illustrate typical membership of
at the completion of the Software Specifica- government and contractor CCBs. The com-
tion Review (SSR) but no later then the CDR. position of both CCBs are very similar; how-
The product baseline is typically established ever, the responsibility of the government
at the completion of the Physical Configura- CCB is at the system level. The contractor has
tion Audit (PCA) after the Type C specifica- additional configuration control respon-
tions are approved. When programmatic sibilities at lower hierarchical levels for both
issues preclude the PM from formally estab- software and hardware as depicted in Figure
lishing a baseline, alternatives include an in- 10-6 [3].
formal or developmental baseline agreement
between the contractor and program office. 10-3.4 Software Configuration Review Board

Informal baselines imply a sharing of con- A Software Configuration Review Board
figuration control responsibility between the (SCRB) reviews and evaluates all proposed
contractor and the program office. It allows changes to the software baselines and deter-
the contractor a large degree of latitude in mines the processing and disposition of

CHAIR: Command Config Manager
Config Management Secretariat

VOTING MEMBERS ADDITIONAL REPS

Engineering Rep Program Manager
Logistics Rep Systems Engineer
Training Rep Program Config Manager

Contracting Rep Program Log Manager
Supply/Support Rep Program Training Manager

Doc Management Rep Safety Manager
.. .User Reps

Program T&E Manager

Fig. 10-5 Government CCB
processing changes to the baseline in pursuit software problem reports. The SCRB serves
of the correct design and relieves the govern- as a filter for the CCB on software related
ment of the formal structured change control matters. Software problem reports, incident
process. However, the contractor proceeds reports, change requests, and change
on risk and is not encouraged to formalize the proposals are first submitted to the SCRB for
changes it has initiated, review and evaluation. The SCRB deter-

mines if the pending software changes should
10.3.3 Configuration Control Board be disapproved or forwarded to the CCB for

formal approval as baseline changes. Prior to
The Configuration Control Board is the or- its decision, the SCRB would have reviewed a
ganizational body within the development or- number of proposed software changes,
ganization responsible for formal processing prioritized their urgency, and determined if
of changes to established baselines. The fUnc- the changes should be made singly or in com-
tion of the CCB is to approve, monitor, and patible groupings or block changes.

10-7

Chapter 10 Software Configuration Management

CCB

HARDWARE CCB SOFTWARE CCB

CHAIR: H/W Config Manager (Prime) CHAIR: S/W Config Manager (Prime)

CO-CHAIR: H/W Config Manager (Vendor) CO-CHAIR: S/W Conf ig Manager (Vendor)

PRIME VENDOR PRIME VENDOR

Project Manager Program Manager Project Manager Program Manager

Systems Engineer Systems Manager Systems Engineer Systems Manager
S/W Config Manager H/W Manager S/W Engineer S/W Manager

OA Manager S/W Manager H/W Conf ig Manager H/W Config Manager
User Reps S/W Config Manager QA Manager QA Manager

QA Manager User Reps H/W Reps
S/W Reps

Fig. 10-6 Configuration Control Board

As with the Configuration Control Board, the board and has final approval authority. The
SCRB is also used by both the government SCRB should meet routinely to act on all
and the contractor. Figure 10-7 illustrates the submitted software problem reports (SPRs).
typical composition of these two SCRBs. The actions of the SCRB may require the

contractor to submit ECPs and other contract
In the government, the SCRB normally modifying requests in order to implement a
begins to functions as the government as- solution to a problem. Normally if a change
sumes management responsibility of the does not effect the baseline, it is implemented
baselines and continues during the produc- on approval by the contractors CCB. Any
tion/support phases of the acquisition cycle of change that affects a program baseline must
a weapon system. That is one of the reasons be transmitted to the contractors CCB for
for including the Software Support Activity as disposition [6]. Disposition may take the form
part of its membership. During the transition
to organic support, the program manager may GOwRNMENT CONTACTOR
choose to have the contractor as a non-voting AFN] - -HRA

CHAIRMAN CHAIRMAN

member of the SCRB. As a minimum, the Program Mgr Office Software Manager

SCRB should be conducted annually in con-
junction with planned upgrades (or releases) - --

of the software system. However, the SCRB Engineering SW Tech Reps

may be convened at any time for major (criti- Logistic Test & Eva,
Test & Eval Systems Engineer

cal) deficiencies discovered in the software. CA ProjectEngineer

S/W Support Agency QA

The software developer typically employs an IV&V S/W Config Manager

Developer Integration Reps
internal SCRB during development. Since UserReps SOL Librarian
the SCRB is a software board, its membership L
is made up of mostly software oriented repre-
sentatives. The software manager chairs the Fig. 10-7 Software Configuration Review

10-8

Chapter 10 Software Configuration Management

of internal direction to proceed because the contract modification. If the contractor in-
change does not impact the design baseline or itiates the change request, the process is
a transmittal to the Government Program Of- similar. The government CCB dispositions
fice for formal government CCB and follow- the change request and formally notifies the
on contracting action, contractor by PCO letter. If it's an approved

Class I change, the contractor and the govern-
The Software Development Library (SDL) ment negotiate the cost and schedule impact.
librarian is a key member of the developer's
SCRB and acts as the board recorder. Since Class I changes follow a more formal route
the SCRB is administered and supported through the CCB. The developer will submit
through the SDL, the SDL librarian is respon- all proposed Class I changes to its CCB for
sible for tracking the status of the Software review and disposition. The CCB will deter-
Problem Reports (SPRs), forwarding the mine if the change should be formally sub-
recommended SPRs to the contractor's CCB mitted to the government. If they decide not
for disposition, incorporating the imple- to, they may choose to follow an informal
mented changes in the SDL, and maintaining route by submitting preliminary documenta-
up-to-date records of these reports. tion consisting of an Advanced Change/Study

Notice, an Engineering Change Request, or a
10.3.5 Configuration Control Process preliminary ECP. If this •:*'formal documenta-

tion is approved, the government will notify
The configuration control process (Figure 10- the developer to submit formal documenta-
8) is•a very time consuming and active process. tion. The formal documentation may consist
It is the heart of th. configuration control of an ECP, a Specification Change Notice
function. Both the government and the with specification page changes, a Request for
developer follow a similar internal change Deviation/Waiver, an Interface Revision
control process which results in software Notice, and supporting cost data. Once ap-
ECPs forwarded to the government CCB for proved/disapproved, the program office will
evaluation and approval, notify the contractor and both will monitor

the implementation status.
The configuration control process begins with
the initialization of a change to an established When Class II changes are submitted to the
baseline (e.g., allocated, functional, pro- government, the government's Defense Plant
gram). These changes may be initiated by Representative Office (DPRO) may approve
government direction, ICWG activity, or con- the classification and sign off on the change.
tractor/subcontractor activity. If the change is Once the change is approved, the contractor
initiated by the government, the developer's may implement and monitor the status of the
engineering activity, in coordination with its change. Class II changes which do not receive
ICWG, will analyze the technical, cost, and government concurrence may be submitted as
schedule impacts of the proposed change. Class I changes.
Once a change has been reviewed and
evaluated, the developer will categorize it as 10.4 CONFIGURATION STATUS AC-
either Class I or II. All software related issues COUNTING
will be forwarded to the SCRB for review,
evaluation, and disposition. The contractor is Configuration status accounting is the mana-
asked to cost this change and participates in a gement information system that provides

10-9

Chapter 10 Software Configuration Management

TECHNICAL, COST REVIEW

HA G SCHEDULE IMPACT - , &

EVALUATE

< CLASS _

CLASS 11

CLASS I #

GOVT

CONCURRENCE

COB REVIEW
(DEVELOPER)

SIMPLEMENTATION
PLAN

"MODIFY
PREPARE CONTRACT

PRREPARE
PRELIMINARY PFORMAL EC

DOCUMENTATION

CCB 1 MONITOR/RECORD
DISAPROAL (GVT) I ~ APPROVAL) IMPLEMENTATIONDIAPOAJ-0 (OT STATUS

Fig. 10-8 Change Control Process

traceability of changes to configuration ment and subsequent support of software. An
baselines and facilitates the effective im- SDL provides storage of, and controlled ac-
plementation of changes. It consists of reports cess to, software and documentation in
and records documenting CSCI change ac- human-readable form, machine-readable
tions. The basic documentation includes the form, or both. It also ensures compliance with
Configuration Identification Index and Status process procedures. It serves as the
Accounting Report. DOD-STD-2167A contractor's single point of configuration con-
provides specific guidance for the status ac- trol during all phases of a contract. The SDL
counting of software. MIL-STD-482A stand- maintains established project baselines, and
ardizes data elements with regard to format, monitors and controls the project develop-
frequency, and record keeping [2]. ment configuration baselines and data

products. Software products consist of
10.4.1 Software Development Library documentation and listings, source code, ex-

ecutable (machine) code, and status records.
The contractor's Software Development The SDL responsibilities consist of:
Library (SDL) is defined in DOD-STD-
2167A as a controlled collection of software, (a) Establishing technical configuration con-
documentation, and associated tools and pro- trol and monitoring the quality of software
cedures used to facilitate the orderly develop- products;

10-10

Chapter 10 Software Configuration Management

(b) Maintaining organizational facilities for test results. The contractor documents the
baselining and controlling the content of development of each CSU, CSC, and CSCI in
software products; SDFs. The SDFs constitute the first line of

configuration management. The Configura-
(c) Establishing reportii.g procedures for tion Manager is responsible for their content
resolving software design or implementation and completeness although this responsibility
issues and documenting the contents of the is typically delegated to the Lead Programmer
library's data products [5]. or the project leader of a particular software

effort. The role of CM is to ensure that the
(d) Serving as the repository for test software SDFs are complete before they are formally
and maintaining configuration control of accepted into the SDL and baselined. This
software testing. step is crucial. Many lower level functions are

tested and validated through the use of the
The SDL librarian stores the completed SDFs. The SDFs are maintained for the dura-
software products. This includes listings of tion of the contract and will be made available
tested functions, development folders as- for government review upon request.
sociated with the function, and functional test
results. He or she also maintains current list- 10.5 CONFIGURATION AUDITS
ings and copies of products under develop-
ment, updates them as required, tracks the The fourth function of government configura-
functions to produce a historical development tion management is to perform a set of con-
record, and controls the distribution of copies figuration audits to verify that the selected
to appropriate personnel. The librarian en- configuration items conform to the specifica-
sures compliance with contractual design tions and related technical data. There are
guidelines and maintains completed software two types of audits conducted: a Functional
development folders. As recorder for the Configuration Audit (FCA) and a Physical
SCRB, the SDL librarian schedules and coor- Configuration Audit (PCA). The details of
dinates the SCRB meetings and reviews the these audits are described in MIL-STD-
SPRs to insure that these reports are ready for 1521B, Technical Reviews and Audits for Sys-
discussion at the SCRB. The librarian tracks, tems, Equipments, and Computer Software.
monitors, and records the status of action
items assigned to the SPRs, and prepares and The software FCA is a formal examination of
distributes the minutes of SCRB meetings. the functional characteristics of a CSCI prior

to acceptance to verify that the CSCI has
10.4.2 Software Development Folder achieved the performance specified in its

Software Requirements Specification (SRS)
A Software Development Folder (SDF) is and Interface Requirements Specification
defined in DOD-STD-2167A as a repository (IRS). Other technical documentation such
for a collection of material pertinent to the as the Software Test Plan (STP), the Software
development configuration. The contents of Test Descriptions (STD), the Software Test
the SDF typically include (either directly or Reports (STR), and minutes of the design
by reference) design considerations and con- reviews are evaluated for completeness. The
straints, design documentation and data, FCA validates the development of a CSCI has
schedules and status information, test re- been satisfactorily completed and that the
quirements, test cases, test procedures, and CSCI performs as defined in the contract.

10-11

Chapter 10 Software Configuration Management

The PCA is a formal examination of the "as- product. Configuration management is espe-
built" version of the CSCI as described in the cially important for software since the physi-
Software Product Specification (SPS). The cal and functional characteristics of software
source code for each CSCI is compared with cannot be assessed by visual inspection like
the associated documentation (SRS, IRS, hardware [6]. Embracing the configuration
software design documents, Interface Design management discipline means making a con-
Documents, and Version Description Docu- tinuous, firm commitment to tracking status
ments) for accuracy and completeness. The of information that is constantly changing [7].
PCA establishes the product baseline for each Without the structure of a sound software
CSCI and may occur prior to hardware and configuration management program, the
software system integration and testing. development of complex software systems
However, system level PCAs are often would be nearly impossible. Sound configura-
delayed until after system integration and tion management is extremely important for
testing is completed. The PCA also verifies life cycle support of software.
that the tested object code can be recreated
or compiled from the baselined source code. 10.8 REFERENCES

A word of caution should be noted in per- 1. College Dictionary, Random House Inc.,
formiig FCA/PCAs. In a highly integrated New York, NY, 1968.
hardware and software effort, it is normally
impossible to completely prove compliance 2. "Configuration Management," System En-
with the requirements without integrating the gineering Management Guide, Defense Sys-
two entities and validating their combined tems Management College, Ft. Belvoir, VA,
performance at the system level. So it may not October 1986.
make sense to perform a FCA/PCA on a
software .SCI prior to the completion of all 3. DOD Directive 5010.19, Configuration
the DT&E testing. This approach forces a Management, 1 May 1979.
tremendous load on the government and con-
tractor reviewers but may be the only way to 4. Bersoff, Edward H., Software Configuration
accurately demonstrate compliance with all Management, An Investment in Product In-
the requirements and to document all the tegrity, Prentice-Hall, Inc., Englewood Cliffs,
discrepancies remaining before the govern- NJ, 1980.
ment will accept the tested article.

5. Buckle, J. K., Softiware Configuration
10.7 SUMMARY Management, McMillan Press, Ltd., 1982.

Configuration management is essential to the 6. Ferens, Daniel V. Mission Critical Coin-
development of mission critical computer puter Software Support Management, Air
resources. It provides needed program Force Institute of Technology, School of Sys-
visibility and allows for the control of the tems and Logistics, Wright-Patterson AFB,
software requirements, design, and final 01H, First Edition, May 1987.
product in an orderly and logical manner. It
also provides and audit trail and defines the 7. Evans, Michael W., Software Quality As-
limits imposed on and by the contractor surance and Management, John Wiley and
during the development of a software Sons, 1987.

10-12

Chapter 11 Independent Verification and Validation

CHAPTER 11

INDEPENDENT
VERIFICATION AND VALIDATION

11.1 BACKGROUND

Independent Verification and Validation (b) Ascertain that the developed software
(IV&V) of software was born during the early satisfied all of the system level requirements;
days of the space and missile programs. Both
NASA and the military realized that software (c) Independently develop a separate
developed for spacecraft and missiles had to software package for those functions deemed
perform correctly the first time. For example, to be critical to the success of the mission.
if the software did not perform as required
during the launch phase of a missile, there This type of IV&V effort did not come cheap!
were no second chances. Software failures A full blown IV&V effort could sometimes
usually meant the loss of the mission, the exceed 50 percent of the software develop-
launch vehicle, and, if the mission was ment cost [1]. The criticality of the missions,
manned, the personnel on board, however, justified these kinds of expendi-

tures. The same was not true when the IV&V
Because of the importance and criticality of philosophy was introduced into non-missile
spacecraft software, money and time were set weapon system programs. Many programs
aside for an independent organization or con- failed to tailor the IV&V approach of the
tractor, other than the software developer, to space and missile programs to the require-
perform several functions: ments of their own programs. Much of the

software developed for aircraft, tanks, and
(a) Independently test the performance of the ships could be classified as non-critical. This
developed software; meant that many software failures had no im-

11-1

Chapter 11 Independent Verification and Validation

pact on critical subsystems and had no effect surance tool, IV&V must complement and
on crew safety. For example, a failure in a reinforce the contractor's software engineer-
built-in-test (BIT) or other diagnostic on-line ing process, configuration management, and
subsystem, usually did not have any bearing qualification test functions [1].
on the success or safety of a particular mission.
Likewise, failure in a piece of automatic test Before discussing the scope and usefulness of
equipment (ATE) or in a data reduction pro- an IV&V effort, it will be useful to define
gram was not catastrophic. Unfortunately, some terms,
large amounts of program funds were need-
lessly spent in the IV&V of non-critical or 11.2 VERIFICATION
secondary software. This has resulted in two
schools of thought. One school feels that Verification is Computer Software Con-
software IV&V is an unnecessary expense for figuration Item (CSCI) oriented. As il-
most weapon systems while the other school lustrated in Figure 11-1, it is the iterative
feels that IV&V should be performed on all process of determining whether the product
software developments. Neither is entirely of selected steps of the CSCI development
true! Software IV&V is indeed an important process fulfills the requirements levied by
aspect of developing quality software, but it previous steps. Specific task areas that make
has to be focused on those areas that are up the CSCI verification process include:
critical to the success or safety of a mission.

(a) Systems engineering analytical activities
Although IV&V is an effective management carried out to ensure that the Software Re-
tool in developing quality software, caution quirements Specification (SRS) reflects the
must be taken in placing too much emphasis requirements allocated from the System
on it. IV&V never alleviates the prime Specification;
contractor's responsibility for mission suc-
cess, system safety, or other quality assurance (b) Design evaluation activities carried out to
practices. To be an effective quality as- ensure that the CSCI design continues to

CONCEPTl DEM/ FULL-SCALE PROD/

EXPLORATION VAL DE VELO PM ENT S UP Po0m-

SIATEMENT SOF`TWARE SFTWARE

OFSYSTEM LEMT E IG SI_0 INTEGRATED OPERATIONAL

NEED SPEC SE O SYSTEM SSE

S VAL VER VER VER ..

SYSTEM DT&E VALIDATION

OT&E CERTIFICATION

Fig. 11-1 Verificati on/Validation/Cert ifica tion

11-2

Chapter 11 Independent Verification and Validation

meet the requirements of the SRS as the 11.4 CERTIFICATION
design proceeds to greater levels of detail
(design verification); Certification refers to the using command's

agreement, at the conclusion of OT&E, that
(c) Informal testing of the CSCI and its corn- the acquired system satisfies its intended
ponents carried out by the developer to assist operational mission. During OT&E the sys-
in development, provide visibility of progress, tern undergoes test and evaluation aimed at
and prepare for formal testing (computer pro- assuring operational effectiveness and
gram verification); suitability under operational conditions [2].

(d) Formal testing of the CSCI (Formal 11.5 THE IV&VPROCESS
Qualification Test [FQT]) carried out by the
developer in accordance with government ap- AFSC/AFLCP 800-5, Software Independent
proved test plans and procedures to verify that Verification and Validation (IV&V), Draft [2]
the CSCI fulfills the requirements of the SRS is an excellent source of information on how
and to provide the basis for CSCI acceptance to:
by the government [1].

(a) Determine the need for IV&V
11.3 VALIDATION

(b) Establish the scope of IV&V
Validation is system oriented. It comprises
those evaluation, integration, and test ac- (c) Define the IV&V tasks
tivities carried out at the system level to en-
sure that the system that is finally developed (d) Estimate software IV&V cost
satisfies the requirements of the System
Specification. Specific validation tasks in- (e) Select IV&V agent.
clude:

Since this document already addresses these
(a) Systems engineering activities carried out issues, this section will briefly summarize the
to ensure that the requirements in the system contents of AFSC/AFLCP 800-5.
specification accurately respond to the opera-
tional needs called for in the Statement of 11.5.1 Determining the Need for IV&V
Need (SON);

Before establishing a software IV&V pro-
(b) CSCI integration activities carried out to grain it is necessary to determine whether the
assemble and check out previously qualified system being considered warrants an IV&V
CSCIs as a fully functioning system; effort. This determination should be made

during the system Demonstration/Validation
(c) The software aspects of system validation phase by identifying and examining software
carried out during System Developmental requirements. The identification and ex-
Test & Evaluation (DT&E) and Operational amination of requirements should be a by-
Test and Evaluation (OT&E) to demonstrate product of the System/Segment Specification
that the completed system meets the require- (SSS) and the preliminary Software Require-
ments called for in the system specification merits Specification (SRS). The require-
(validating the system). mentswithin each CSCI should be assessed to

11-3

Chapter 11 Independent Verification and Validation

determine if an undetected error has the of effort type contract until the effort can be
potential for causing death or personnel in- better defined.
jury, mission failure, or catastrophic equip-
ment loss. A determination should be made Regardless of whether one uses the SSS or
to see if any of the software development SRS, the test for criticality of software re-
effort is to be considered medium to high risk quirements is performed using the following
due to technical reasons (i.e., complexity, six-step procedure (See AFSC/AFLCP 800-5
state-of-the-art, system integration, maturity for detailed information):
of tools). The CSCIs that meet any of these
criteria should be supplemented with an (a) List the software requirements;
IV&V effort. In addition, the software safety
analysis performed as specified in MIL-STD- (b) Identify the potential impact of un-
882 may also determine the need for IV&V. detected software errors or faults on the

software requirements;
11.5.2 Establishing the Scope of IV&V

(c) Estimate the probability of occurrence for
The IV&V effort should be tailored so that it each error;
is commensu rate with the level of criticality of
the software being developed. After deter- (d) Calculate the criticality value of the re-
mining the need for IV&V, its scope can be quirements as shown in Table 11-1 (See
established by performing a criticality analysis ASFC/AFLCP 800-5 for details);
of the software. This analysis should be done
at the CSCI level using the SRS and Interface (e) Calculate the overall criticality value for
Requirements Specification (IRS). In many the system or for each CSCI.
cases, this level of detail is not always avail-
able prior to the FSD contract. In these cases, (f) Select the appropriate level of IV&V
the analysis can be performed at the SSS level, based on system's/CSCI's criticality value.

PROBABILITY IMPACT CATEGORIES

OF

OCCURENCE CATASTROPHIC CRITICAL MARGINAL NEGLIGIBLE

Frequent 12 9 6 3

Probable 8 6 4 2

Improbable 4 3 2 1

Impossible 0 0 0 0

Table 11-1 Requirement Criticality Values

Unfortunately, this may lead to an overall 11.5.3 Defining the IV&V Tasks
IV&V effort that is too detailed for some
CSCIs or not detailed enough for others. The Once the criticality values are calculated the
program manager can partially deal with this appropriate level of IV&V can be selected as
problem by placing the IV&V agent on a level shown below:

11-4

Chapter 11 Independent Verification and Validation

Criticality Appropriate Level I
Value IV&V Level

Same tasks as level II plus the following:
6-12 I
3- 6 II (a) Structural and functional analysis of re-
2 - 3 III quirements, design, and code;
0 -2 None-III

(b) Propose alternative designs for critical
The three levels of IV&V tasks include design areas;
various tasks that grow in scope and com-
plexity as you progress from one level to the (c) Redevelop key code;
next. The IV&V levels are defined as:

(d) Conduct special test in critical areas
Level III beyond contractor's formal qualification tests

(i.e., stress testing, simulations).
(a) Evaluation of software documentation;

Each IV&V level is progressively more
(b) Participation in milestone reviews and for- detailed and comprehensive than the pre-
mal qualification testing, evaluation of test vious level. The realism of the criticality
plans; values depend on the experience level and

background of the people performing the
(c) Identification of critical requirements and analysis. To select the scope of IV&V and to
design issues; ensure that its results are not biased, someone

other than the software developer or the
(d) Monitoring the development process and potential IV&V agent should perform the
providing technical consultation; analysis.

(e) Evaluation of critical test results; It is important to note that IV&V involves
activities over the entire software life cycle

(f) Performing selected audits. and that it is more than just another software
test activity. Too often the majority of the

Level II IV&V effort doesn't start until the software is
in the test phase when problems become

Same tasks as Level III plus the following: more visible. Waiting until testing to identify
and remove problems loses most of the

(a) Analysis of selected critical functions; benefits associated with IV&V.

(b) Spot checking design performance; The tasks performed by the IV&V agent can
vary greatly in terms of the costs versus the

(c) Independently testing critical code; benefit gained by the government. The pro-
gram office .,'. ild make provisions to ter-

(d) Analysis of developer's test results; minate an IV&V task when its cost exceeds its
benefit. The program office should establish

(e) Independent evaluation of all software criteria and/or thresholds for terminating
problem reports. IV&V support. If the IV&V agent is the sup-

11-5

Chapter 11 Independent Verification and Validation

porting command for example, program development cost. From this figure and the
management responsibility transfer might be software's criticality value, the IV&V cost as
chosen as the termination point. If the IV&V a percentage of the total software or CSCI's
contractor is for level III tasks, then comple- development cost can be estimated. These
tion of reviews on the operations and main- estimates may be on the high side because
tenance manuals may be the termination they were taken from programs that did not
criteria. A termination clause for an IV&V use DOD-STD-2167A, Defense System
effort should be included in all IV&V con- Software Development or MIL-STD-1815A,
tracts or tasking documents. Ada Programming Language. Use of these

two standards should decrease IV&V costs.
11.5.4 Estimating Software IV&V Costs Both standards increase the engineering dis-

cipline in the software development process
There are no magic formulas to help predict and this improves software quality and makes
IV&V costs. IV&V cost estimating requires the IV&V effort easier.
a thorough understanding of the system
software and sound judgment. This section The above guidelines assume that the
provides some simple guidelines to follow software development cost has been correctly
when estimating IV&V costs. These estimated and accurately defined in terms of:
guidelines are based on historical trend data
and past experience. (a) Size (lines of code);

In general, the cost of software IV&V can (b) Complexity;
range from 10 to 50 percent of the cost of
developing the software depending on the (c) Volatility of requirements;
IV&V level selected [1]. The majority of
IV&V programs are usually at the lower end (d) Programming language;
of this cost range. Figure 11-2 graphically
depicts the relationship between the IV&V (e) Quality of existing software and documen-
level and cost as a percentage of software tation (when modifying or using existing

Percent of CSCI software);
0.55 Development Cost

0.50 (g) Maturity of system software and develop-
0.45 ment tools.
0.40

V
& 0.35 Variations in any of these factors can impact
V 0.30 software development cost and subsequent
C 0.25 IV&V cost. Before attempting to estimate
0 020 IV&V cost, it is very important to have aS
T 0• thorough understanding of the software re-

0-10 quirements.
0.05 1

0 1 T111 ui i II IV&V costs should seldom, if ever, exceed 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 percent of the software development cost.

CSCI CRITICALITY VALUE Above the 50 percent level, it means that one

Fig. 11-2 IV&V Costs Vs. Criticality Values expects software failures to have catastrophic

11-6

Chapter 1 IIndependent Verification and Validation

effects on the program and that such failures One does not want an IV&V agent working
are highly likely to occur. If this is the case, it on a level I IV&V effort whose entire ex-
probably means that the application is beyond perience is limited to level III IV&V.
the state-of-the-art or at the very least on the
leading edge of technology and may not be (b) Application Experience - The IV&V agent
ready to proceed into full scale development, must have experience in developing or per-

forming IV&V on similar type systems and be
11.5.5 Selecting lV&V Agent qualified in the technology area under

development;
Selecting an IV&V agent is the responsibility
of the program office. The agent selected (c) Personnel Experience -'The management
must be autonomous from the software and technical personnel must have a strong
developer. The IV&V agent may be a part of IV&V background on similar programs and
the prime's organization but must report to a be proficient in using their company's IV&V
levelabove the head of the software develop- tools. In addition, they must also have
ment team (similar to any contractor's quality detailed knowledge of similar systems and the
assurance organization). However, there can technology areas being developed;
be significant benefits from using the software
support activity (SSA) as the IV&V agent. (d) IV&V Tool Library - The IV&V agent
This gives the SSA a vested interest in the should have IV&V tools that are appropriate
software development since they must sup- for the specified IV&V level. These too Is
port the system after system delivery, should have been regularly used in the past

and not require inordinately specialized
The following guidelines should help in talent to use. The existence of a large tool
selecting the best qualified IV&V source: library is of little value if the tools cannot be

easily used or the IV&V agent is not
(a) IV&V Experience - IV&V involves the use thoroughly familiar with their use and limita-
of specialized techniques performed by highly tions.
skilled personnel for detecting errors not
usually found by the software devel,,er. To determine the qualifications of an IV&V
Therefore, one of the most important agent the program manager has two options.
qualifications of a potential IV&V agent is First, review the agent's past performance on
experience. The IV&V agent must have a similar applications. Second, perform a
strong background in the latest IV&V techni- software capability/capacity review on the
ques and have a successful track record. A IV&V agent as described in Chapter 8.
large amount of IV&V experience gives the
IV&V agent the intuitive insight into where 11.6 REFERENCES
problems most likely occur; the ability to
quickly recognize problem areas and pit falls; 1. AFSC/AFLCP 800-5, Software Independent
expeditiously recommend sound solutions; Verification and Validation (IV&V), 1988.
and experience in working harmoniously with
the soft 'are developer in a pressure filled 2. ESD-TR-326, Software Acquisition
environh,,ent. It is imperative that the agent's Management Guidebook: Validation and
IV&V experience be commensurate with the Certification, Electronic Systems Division,
level of IV&V desired on that application. Hanscomb AFB, MA, August 1977.

11-7

Chapter 12 Metric*

CHAM3TER 112

METRICS

12.1 INTRODUCTION

This chapter deals with the mechanics of 12.2 TYPES OF METRICS
measuring the progress of a software develop-
ment effort. The material is addressed from There are many different software metrics
a top level perspective and is typical of the available but few of them are proven.
data that is usually presented to a program Software metrics are still in various stages of
manager. Because the data will be summary development so their utility, timeliness and
level data, additional data at the next level of cost will differ greatly. Metrics, however, can
detail may be required to support a thorough be used for timely and realistic adjustments to
review. The software manager should have the software development process in order to
more details and ready access to the balance cost, schedule and performance ob-
contractor's data. To receive metrics data re- jectives. In addition, metrics help assure the
quires that this requirem•..nt be clearly called delivery of a product which will satisfy the
out in the contract. It is important to examine user's needs and which may be more easily
the contractor's process to determine what and economically supported and evolved.
data is available ..nd to use the contractor's
system as much as possible. The government Software metrics may be divided into three
should refrain from imposing unnecessary re- areas: management metrics, quality metrics
quirements on a software developer such as and process metrics.
too many metrics, frequent reporting periods,
or peculiar data formats. If the data is not 12.2.1 Management Metrics
available, it may indicate a weakness in the
contractor's ability to properly manage These metrics are primarily concerned with
software development and to provide indicators which help determine progress
progress visibility to the program office. against plan. The indicators are selected from

12-1

Chapter 12 Metrics

drivers which have an impact on the required techniques and procedures and are used to
effort. Cost estimating models are used to develop and deliver the software products.
relate the drivers to effort, cost and schedule. Good examples of process indicators ar'- con-
In addition to these drivers, a set of product tained in the Software Engineering Institute's
progress indicators are selected to help deter- (SEI's) contractor capability assessment
mine the impact of changes in the drivers to questionnaire and ASD Pamphlet 800-5,
product progress and as more direct in- Software Development Capability and
dicators of program progress. The trends in Capacity Review [1]. Process metrics may pro-
these indicators support forecasts of future vide earlier indications of difficulty and the
progress, early trouble detection and realism need for remedial action. They may provide
in plan adjustments. Management metrics the only rich source of feedback for process
have been applied effectively to programs at improvement. More effort, however, is re-
several system commands over the past five quired on the definition of process indicators
years. and the relationship of the process to program

success. A number of activities at the SEI are
12.2.2 Quality Metrics underway in this area.

These metrics are primarily concerned with The costs of applying process metrics are also
product attributes which affect performance, generally higher than those for management
user satisfaction, supportability, and ease of metrics. The rest of this chapter primarily
change. Examples of quality metric indicators addresses management metrics.
are error density, reliability, expandability,
and portability. Although reliability and error 12.3 METRICS APPLICATION
density metrics have been in use for some
time, more development in the quality Uncertainties and pressures for change exist
metrics' area is required to relate these throughout all phases of the acquisition
metrics to program success. A number of process. Change in the acquisition process is
design and analysis tools which support the inevitable as development proceeds and re-
use of quality indicators are emerging in this quirements become better defined; as cost,
area. Two tools which are useful to Ada performance and schedule estimates are
software development programs are the Ada refined; and as personnel, machine, test and
'Test and Verification System (ATVS), support resource requirements are identified.
developed by the Rome Air Development
Center and the Ada Measurement and To support these adjustments, indicators of
Analysis Tool (ADAMAT), developed by the actual versus planned progress are useful.
Dynamics Research Corp. However, the Full Scale Development (FSD)

activities appear to be the most appropriate
The costs of applying quality metrics are ones for application of r.r 1 nagement metrics.
generally higher than those for management The degree of definition, the data availability,
metrics, and the criticality of decisions during these

activities is consistent with a vigorous meas-
12.2.3 Process Metrics urement program. The Concept Exploration

(CE) and Demonstration/Validation (D/V)
These metrics are concerned with those in- activities should provide good insights into
dicators that deal with organizations, tools, remaining risks and uncertainties. These ac-

12-2

Chapter 12 Metrics

tivities also provide useful information for establish an appropriate base and strategy for
tailoring FSD Request for Proposal (RFP) contractor selection and generate a plan for
requirements for metrics data and analysis, the application of management metrics.
and for source selection criteria and weight-
ings. 12.3.2 Government Model

12.3.1 Pre-Solicitation The government must have some set of es-
timating relationships, historical data or es-

The risks in requirements definition, design, timating model to develop an independent
resource requirements and technology ap- cost and schedule estimate. The independent
plication should be defined during the CE and estimates are necessary to bring realism into
D/V activities leading to RFP preparation and the source selection process and for the
source selection for FSD. The likely areas of negotiation of contract award. A database to
uncertainty should be identified sufficiently support generation of estimates and to update
to provide some basis for tailoring the RFP cost estimating relationships and model
and source selection criteria. The tailoring parameters should be maintained by the sys-
should reflect the type of data input and the t.,m commands. The collection of data should
processing and analysis required for the be done in such a manner that the use of data
specific project. If the early activities are shor.- across projects is facilitated and the results are
tened or eliminated as may be the case for meaningful. The use of the database, model,
Non-Developmental Item (NDI) systems or and estimating relationships carry over to sup-
systems where few of a kind are being port of the monitoring activities which take
procured, tailoring of the data requirements place after contract award. The historical ex-
may be more difficult and changes in data perience may be used to set thresholds for
needs, processing and analysis should be ex- review and assess the realism of plan adjust-
pected. A larger set of data inputs may initially ments.
be required.

12.3.3 Resource Needs
The measures called out in the RFP will
generally be a broader set than required for The cost of tracking software development
the project after the source selection and status through use of management metrics is
negotiation activities have been completed. a function of the size and complexity of the
The information gathered during these ac- software development, the previous cx-
tivities on development approach, risk assess- perience of the contractor and government
ment L id contractor process maturity will be with the problem domain, and the rmaturity of
used to tailor the data collection and analysis the contractor's software development
to the particular contractor's capability and process. Management metric data needs to be
resources. provided by the contractor and processed and

analyzed by both the contractor and the
The efforts prior to the completion of the FSD government. The contractor needs the data to
solicitation package should be geared towards understand his own progress and to adjust his
refining the scope of the project in terms of plans and application of resources as well as
scrubbed requirements, realistic baselines, an to report meaningful progress to the govern-
independent cost and schedule estimate, and ment. Although the contractor should per-
a risk reduction plan. The government should form the bulk of the analysis and reporting,

12-3

Chapter 12 Metrics

experience has shown that the government make best use of the metrics' application. If a
must have access to the basic data and some Program Office does not have this capability
capability to independently analyze and in house, support could be provided through
present progress results. Systems Engineering and Technical Assis-

tance (SETA) or IV&V contractors. Ex-
The largest potential driver of government perience at the Naval Underwater Systems
effort is the level of maturity of the selected Center (NUSC) has shown that a core group
contractor's software development process. A of metrics knowledgeable personnel who look
contractor at low maturity levels will not have across programs are a valuable asset to the
a wel-dcfined process, progress will be more system command and its program offices.
difficult to determine, and generallymeaning- They have the cap&,',ility to build or adapt
fu! measures of progress will not be available analysis tools, maintain a data base for histori-
until later in the development cycle. The ap- cal comparisons, tailor the data needs to the
plication of metrics will more certainly be an particular project, and evolve the set of
additional activity, and existing process and metrics to better serve the command.
analysis tools will be rudimentary or ad hoc.
The contractor's ability to provide analyses to The contractor level of effort for applying
support government needs for program status management metrics has varied from 1 to 5
information will be limited. If metric's ap- man years per year. A number of other pro-
plication is to be useful, the requirements for gram office/contractor activities, such as con-
government efforts will increase. Unless figuration management, technical
there is some process definition and some performance monitoring, and cost/perfor-
basis for in-process measurement, the use of mance reporting, require data inputs process-
after-the-fact product measures may be the ing and analysis that are similar to the data
only practical approach. Provisions for in- input, processing and analysis required to sup-
creased effort and schedule to support rework port the use of management metrics. In addi-
likely will be required. tion to the personnel effort required, analysis

tools and computer resources are also
The required government level of effort to needed.
monitor management metrics for program
with 50-250 thousand lines of source code has The use of management metrics on a program
generally been between 1 to 3 man years per should be called for in the solicitation pack-
year. As quality and process metrics' applica- age. The source selection plan should include
tions grow, the level of effort may increase by criteria for evaluating the contractor's
I to 2 man years per year. However, as response.
software contractors' software development
processes mature, the type of measures will 12.3.4 RFP and SOW
change and their utility will increase, The re-
quired government effort may then decrease The RFP needs to describe a core set of
and become more of an audit function that measures which attempt to anticipate the per-
checks to see that the contractor is following tinent parameters and the degree of disag-
his defined process. gregation (i.e., breakout into critical

components) of these parameters required to
The government requires personnel skilled in provide good insight into software develop-
software engineering and development to ment status and support realistic program ad-

12-4

Chapter 12 Metrics

justment. The choice of contractor is not data which will be valuable for verifying as-
known at RFP time, and so the core set of sumptions and which will be critical for im-
measures must be broad enough to cover dif- pact analysis. The risk assessments and the
ferent development processes and ap- scoring of proposals provide keys to the meas-
proaches, different levels of contractor urement areas which should receive most em-
maturity and broad sets of possible risks. In phasis and determine the degree of
addition, it is difficult to predict ahead of time disaggregation of the data that is required. A
howprogress will proceed and what questions centralized activity for keeping track of data
may be asked. Experience captured from pre- and cost estimating relationships at each sys-
vious projects may be used to adjust the core tems command is recommended to provide
set of measures to anticipate later needs. historic data for assessing plan realism and

determining risks as well as updating the data
123.5 Choice of Measures collection form.

Detailed plans for the software development 12.3.7 Process Maturity
process are formulated and submitted in the
FSD proposals. Contracts are awarded and The use of the SEI process maturity model in
management actions are guided by a set of the Software Capability Evaluation (SCE)
plans for the software development process provides another source of inputs for tailoring
keyed to a set of assumptions. These assump- the data set. The evaluation highlights
tions include software size and type, person- strengths and weaknesses of the contractor's
nel and machine resources and capabilities, software development process. This is key to
complexity and criticality of design and per- selecting the metrics and level of disaggrega-
formance, and requirements' certainty and tion. In addition, the maturity level indicates
stability. These drivers and assumptions are the degree to which the measures may be
used to estimate cost, schedule and perfor- effective and their likely timeliness in deter-
mance and to allocate resources. The factors mining status or aiding plan adjustment. The
which significantly affect cost and schedule use of these evaluation techniques also pro-
generally are those which are identified as the vide a basis for contractor improvement of the
driving factors in commonly used software proposed process.
cost estimating models. Keeping track of
these drivers provides good insight into the 12.3.8 Negotiation
likelihood of change in planned progress. It
should also highlight the need for tuning or During negotiation the information gained
adjusting plans to meet program objectives, from the source selection analysis and evalua-

tion activities are used to adjust contract re-
123.6 Use of Models and Norms quirements for collection and analysis of

management metrics.
The contractor proposed plans and assump-
tions and the models or historical data which The key results of the source selection
relate the assumptions to effort are the base analysis and evaluation should be used to ad-
against which progress may be measured just the data set, processing and analysis
during FSD. During the source selection, which will be required ofthe selected contrac-
reviews of each contractor's assumptions and tor. The assumptions which support the level
models will point up risk areas and highlight of effort and schedule decisions should be

12-5

Chapter 12 Metrics

recorded. The estimating relationships or progress. Agreement on definitions of the
models which relate the assumptions to that hard milestones should be established before
effort and schedule should also be recorded contract award. Much of the data should be
along with the reasons for differences be- automatically generated by modern con-
tween assumptions and norms. The figuration management tools. Trends in the
contractor's proposal, as adjusted by the data may be used to forecast future progress
negotiation, represents a plan for software and indicate the realism of proposed plan
development. By signing the contract, the adjustments. The extrapolation of the trend
government chooses the contractor's plan for data on actuals generally provides the best
the software development effort, estimate of activity completion.

The types of measures to be employed and The measures used for keeping track of
their degree of disaggregation should be in- progress are generally interdependent. For
fluenced by the SCE report. The level of example an increase in software size should
maturity and the strengths and weaknesses be accompanied with an increase in resources
recorded in the report should be used to add or a change in schedule. These interdepen-
or adjust data requirements. The contractor's dencies may be used to assess validity of
plan for process improvement in response to reporting and realism of plan adjustments.
the SCE report should be approved and
provisions for tracking progress should be in- The use of management metrics on a number
cluded in the contract. of system commands programs has proven to

be a valuable aid in detecting early trouble,
The risk areas identified during source selec- adjusting plans realistically and forecasting
tion should be recorded and used to adjust the future progress. In addition, metrics have
data collection and analysis requirements. provided a basis for asking more useful and
Contractor plans for risk reduction should be directed questions about the true status and
approved and provisions for tracking progress well being of the project.
should be included in the contract.

12.3.10 Adjustments and Refinements
12.3.9 Contract Monitoring

Feedback from progress on the effort should
The data on drivers and assumptions should be used to adjust and refine the collection and
be monitored periodically to determine analysis requirements. Requirements may be
progress against plan and the need for plan deleted in areas in which progress is good or
adjustment. Care should be taken to preserve the level of data aggregation may be in-
original baselines and assumptions so that ad- creased. New requirements for collection and
justed plans do not paint a false picture of analysis may be generated as a result of poor
progress history. In addition to the data on progress, special problems or better under-
drivers and assumptions, data on product standing of the process. Lessons learned
progress is required to provide more direct should be passed to future projects.
indications of plan status and progress. In-
dicators of design, code and test progress in 12.4 PROGRAM MANAGER'S METRICS
the form of hard milestones (rather than per-
centage of planned effort complete) provide The state -of-practice in software metrics is far
"inchstones" for determining program from perfect, but there are a few recom-

12-6

Chapter 12 Metrics

* Software Size and Cost Status (Figure 12-1). The metrics for each Corn-

* Manpower Application Status puter Software Configuration Item (CSCI)

* Cost and Schedule Status are normally tracked individually. The trend

p Resource Margins should be fairly stable, although a deviation

• Quantitative Software Spec Status may indicate a better understanding of the

* Design and Development Status requirements. One should look for an un-

* Defects/Faults/Errors/Fixes stable baseline, requirements growth, and
• Software Problem Report Status poor planning. The software size metric is* Test Program Status generally the input to a cost model such as
p T Delivery Status COCOMO [3]. Changes in size require moreDelivery Status resources and reflect a change in cost. The

Table 12-1 Metrics cost model is not shown.

mended metrics that are appropriate for all
programs. Metrics are generally relevant only Rules of Thumb for Software Size and Cost
to an individual program and indicate trends Metrics

or alert flags; they are not absolutes. In other
words, a specific value may not describe ab- (a) Month to month estimates should not vary
solute performance or cost but the collective by more than 5%. Variation may indicate a
data may provide a level of confidence on the better understanding of the requirements or

range of performance or cost. problems with the contractor's development
process.

The following material is extracted almost
entirely from the Air Force Systems Corn- (b) The costs of developing new code, modify-mand, Electronics Systems Division and ing code, or using existing code differ. Typical
MITRE document, ESD-TR-88-001, effective weights for source lines of codeSoftware Management Metrics [2] (SLOC) are: New code 100%, Modified code50%, Existing code 10%. It takes about twice

Table 12-1 lists the metrics that should nor- the effort to produce new code as it does to

mally be available, at least monthly, to the modify existing code.

program manager. The basic method requires
an initial planned estimate as a baseline to (c) SLOC requirements directly impact man-

measure progress against. Actuals are then power requirements.

tracked against the baseline plan and trends THUSA NS

or thresholds are analyzed for progress or TOTAL

problems. S
120 - '-•.. NEW

SLOG

Although there are other metrics available, s SLOG

the list in Table 12-1 is an attempt to provide L REUSED0 80 ,-,. S. LOC

the program manager with a 'Top Ten List." c

12.4.1 Software Size and Cost Status 40 : .

The software size metric tracks the magnitude rrnTTITJ:1 .
of the software development effort while the I- L - _..J.....1 - 1. -.. 1 ,

SSR SDR SSR PDR CDI,

cost metric tracks expenditure of resources Fig. 12-1 Software Size

12-7

Chapter 12 Metrics

(d) Tailor the metrics by tracking: (d) Tile development schedule depends on
the amount of man-months expended:

- Equivalent SLOC (weighted);
- Each programming language; - Understaffing is an early sign of schedule
- The metrics for each CSCI separately; slippage;
- Object code size.

- If you are behind, you can't always catch up
12.4.2 Manpower Application Status by adding more manpower. Adding man-

power may even further delay the overall
Tracking planned versus actual manpower schedule;
loading provides visibility into future
schedule problems (Figure 12-2). Resources - Judicious use of overtime may help;
should be identified as either experienced
personnel and senior personnel, or as inex- - Additional use of manpower may work but
perienced and junior personnel. Tracking los- only for tasks that can be separated or isolated
ses is also important, particularly if the losses with simple interfaces;
are in key positions such as the chief program-
mer. (e) High turnover or loss of key personnel is

a sign of problems;
Rules of Thumb for Manpower Metrics

(f) Tailor the metrics by tracking the staffing
(a) The ratio of total to experienced personnel for each:
should never exceed 6:1. A ratio of 3:1 is
typical. - Development task;

(b) Initial staffing usually comprises about - Skill (e.g. Ada, Data Base Minagement Sys-
25% of total personnel requirements. tems, Artificial Intelligence);

(c) The front end should be leveraged with - Organization (e.g., Software, Quality As-
more experienced personnerI. surance, Test).

-PLANNED-..... 12.4.3 Cost and SchedL~e Status
7Z1 ACTUAL

80 TOTAL Financial reporting provides the status of
GOO " work performed and actual cost of work per-

P

, 4001 formed versus the plan (Figure 12-3). This is
- EXPERIENC..D the traditional Cost/Schedule and Control

s

o 200- - System. Typically, the data reported to the
N K government provides little visibility into the
N UNPLANNED LOSSES

E 0 .NPLANNED L. -. software development status. This usually oc-
L curs because of inadequate definition of the

.- : software Work Breakdown Structure (WBS)
P- CR .R .R as well as the level of reporting. The WBS

levels must provide reasonable visibility to the
program manager. One way to do this is by

12-8

Chapter 12 Metrics

defining a product oriented WBS for the Rules of Thumb for Resource Margin
software. Metrics

Rules of Thumb for Cost and Schedule (a) CPU utilization should allow for a 50%
Metrics margin at delivery (this means that only half

of the resource has been used);
(a) Be alert to variation thresholds exceeding
10%. (b) Memory utilization should allow 50%

margin at delivery;
(b) Beware of efficiencies that are projected
to improve. Past performance is a measure of (c) I/O utilization (channels and data rates)
productivity and efficiency and it is very useful should allow 50% margin at delivery;

NAVIGATION AND GUIDANCE CS00
MILLIONS OF DOLLARS (d) For real-time systems, performance and

12 • -- - ---

productivity deteriorates quickly above 70%1
-0 utilization;

8 - - -- - - - - - - -- - -- -. . ..-- - - - - - -- - -. - -- - - -.

- -- - - - - - -- - -. (e) Consider hardware resource limitations
-CWS (e.g. memory addressing as a hardware limit);

2 -------------- ---------2 ... 5 ' (f) R esource utilization tends to increase w ith

iN tUL J ±] K q_,i time so plan for expansion;
87 I 88 I 89 1

TIME IN MONTHS (g) Schedule and cost "bomb" at 10% margin

Fig. 12-3 Software Cost and Schedule (in other words you'll already have seen an
for forecasting estimates to complete. Ef-
ficiencies don't usually improve that much. M CPU

[.2,JMEM4ORY

(c) Tailor metrics by tracking: 8o - I/o
CHANNEL

- Each CSCI; P

- Support software development. R PLANNED SPARE

12.4.4 Resource Margins N o
N

Resources describe the hardware limitations
of the systems. These include Central
Processing Unit (CPU) throughput, memory
size, and input/output channel capacity and CoD TRR

rate (Figure 12-4). Resources can have a Fig. 12-4 Computer Resource Margins
direct impact on software productivity and
design efficiency. The development resource exponential rise in the effort required to
margins are as important as the target resour- squeeze, pare, re-code, fix, etc.);
ces particularly for planning software support. (

(9) Tailor metrics by tracking:

12-9

Chapter 12 Metrics

-According to architecture (e.g., multiple (b) Requirements growth, no matter how
CPUs); small, will impact planned resources and

- Average and worst case; should be contained from the beginning of the
- Host and Target equipment; prog,-am;

12.4.5 Quantitative Software Specification (c) Requirements' uncertainty leads to En-
Status gineering Change Proposals (ECPs);

A baseline plan is initially estimated for the (d)Requirements are baselined at the
quantity of discrete software requirements to Software Specification Review (SSR);
include both functional requirements and in-

-........... . (e) If the requirements are not stable by the
60 OPEN SAis Critical Design Review (CDR), the program
60--NEW SAIs is in serious trouble;

S
A 40 (f) Requirements change after CDR will most
I p probably impact the schedule;

20 -n toalo
20 -r (g) Phase incremental development to allow

the requirements to be revisited before the

..... _OJ _ _. next increm ent's PD R ;
SSR PDR CDR

Fig. 12-5 Software Volatility/Action Items (h) Software action items should not remain

terface requirements. Actual progress is open beyond 60 days.

tracked against the plan. This metric provides
visibility into the progress of the requirements 12.4.6 Design/Development Status
analysis as well as the growth of the require-ments in the baseline (Figure 12-5 and 12-6). The contractor should describe in the

Software Development Plan the process for

Rules of Thumb for Specification Metrics inspections, walkthroughs and internal design
reviews. These events can be tracked to

(a) Each requirement should have a planned determine the rate of progress. On a large

completion date; project these events can number in the
thousands (Figures 12-7 and 12-8).

2,50 ----------..-...-

STOTAL
.- T 200 -.-----.--- .-

R 1=1H:1 cum R
E" lCHANGESE 150

1.500X) • -300

R 100

SRS 1 / _ TOTAL
M SRS ,. .•- ROMTS

TEy, M SO, ORIGINAL
T 1100 E 50 PLAN
S /T '/ REVISED

s ~PLAN
• z J I I... I 1 -. 1i i 0 1 1,.r.t . , : Z ;J t [..iI C U L ' I

SR SR POR CO RR SDR SSR [SSR) O

Fig. 12-6 Software Volatility/Requirements Fig. 12-7 Design Process

12-10

Chapter 12 Metrics

11,.0o-- Internal reviews of program design lan-
guages (PDLs);

800 -
m PLANNED

"" U U, ACTUAL (g) Delaying development to obtain a better
DESIGNATED

C 6 understanding of the requirements is usually
U CSUCED a wise decision. Tradeoffs may be made to

.INTEGRATED reduce requirements for gains in schedule;

2W0 -

(h) Diverging from the plan means that the
0D requirements are less understood. You may0 *5;-' C RR I not be ready for the SSR;

Fig. 12-8 Development Progress

Rules of Thumb for Design Metrics (i) Tailor the metrics by performing more

detailed tracking, from the SDD to the Coin-
(a) The Software Requirements Specification puter Software Unit (CSU).
(SRS) should be complete before the
Software Specification Review (SSR); 12.4.7 Defects/Faults/Errors/Fixes

(b) The Software Design Document (SDD) Tracking the actual performance of the
should be complete before the PDR; process provides some visibility into the

product quality. This is only true if the con-
Rules of Thumb for Development Metrics tractor has a controlled, repeatable process.

Ad Hoc software development is not predict-
(a) The CSU design should be complete able.
before the CDR;

A defect is an anomaly in the requirements
(b) CSC integration and test must be coin- and design. A fault is an anomaly in im-
pleted before the Test Readiness Review plementation (code). An error is the source
(TRR); of a fault and a fix is a correction of an error.

Errors and fixes are tracked through the
(c) Diverging from plan may mean schedule
delays; NEW AND RESOLVED SOFTWARE FAULTS

RATE OF DEFECTS/FAULTSI60

(d) Track to cost model (e.g. COCOMO); 140

(e) Estimated Source Lines of Code (SLOC) 120 ,
1001

produced per staff month can be categorized ... ,et .

as: 80
N0 A NEW FAU LTS

Easy Code 250-500 40 !" ESOtVED

Moderate Code 100-250
Difficult Code 30-100

JAN MAY SEP JAN MAY SEP JAN MAY SE P JAN

(f) Tailor metrics by tracking: D 86LO 87 TI Mg. DEVELOPMENT TIME

- Each CSCI; Fig. 12-9 Defects/Faults/Errors/Fixes

12-11

Chapter 12 Metrics

Software Problem Reporting system (Figure 12.4.9 Software Problem Reports Status
12-9)

Software Problem Reports (SPRs) provide
Rules of Thumb for Defects/Faults/Er- feedback on the correction of errors and are
rors/Fixes/Metrics an indication of product quality (Fig. 12-11)

(a) Defect/fault/error rates are an early in- Rules of Thumb for SPRs
dication of product reliability.

2,5W (a) Planning should account for the iterative
SPLANNED and interactive nature of testing;

2,000 - ACTUAL

T 0(b) The number of tests completed should
E 1,5w converge on the number of tests planned;
S

(c) Use trends to predict schedule;

(d) Unresolved problems should decrease to

0 .---- zero as you approach the TRR and again as
you approach the Physical Configuration

Fig. 12-10 Test Program Status Audit (PCA);

(b) The contractor's process should focus od-
defect prevention and early fault detection. (e)The number of SPRs is an indication of the

testing adequacy and the code quality. Too
12.4.8 Test Program Status many SPRs may indicate poor quality; too few

may mean inadequate testing. It takes a
The entire test process can be tracked from process change to improve the rate and the
planning through detection of errors and cor- quality. In today's state of practice a typical
rection (Figure 12-10). Quantitative range is 5 to 30 SPRs per 1000 SLOC.
measures can start with a requirements and
test cross reference matrix. Progress can also (f) If the slope of open SPRs is positive then
be measured on planned versus actual tests problems are being found faster than they are
performed. being fixed. If the slope is negative then the

schedule can be predicted.500l2

NEW
SPRs

•0-• o , 25 (g) Tailor the metrics by tracking:"PSPRs
SPAs "

.P30..0,•--; DEs~ , P - The number of days SPRs are open (e.g.
"R 0-30, 30- 60, 60-90, over 90);S2o /;/ _2 ,o ,

S•A .15 ° - Open SPRs by type of software (e.g. applica-
tion, support, test, operating system);

L0'N..
0- CTRP .,-r•rR) PGACA- - Open SPRs by priority (e.g. critical to opera-

Fig. 12-11 Software Problem Reports tion, critical for integration, other);

12-12

Chapter 12 Metric*

- SPR density (SPRs per 1000 SLOC in _=_

categories 0-10, 11-20, 21-30, and over 30).

12.4.10 Delivery Status Soo

A good indicator of progress is to track both c RELESE 2AS 6W 0

internal and external incremental delivery U
status (Figure 12-12). For example, one can S RELEASE 2

track internal delivery to the test organization 400 -______,___

for integration and test and external delivery RELEASE 1 O ORIGINAL

to an IV&V agency. Often, early problems in 200 - PLAN
a release may be deferred to a later release. CURRENT

This delay should recognize the shift in ESTIMATE

resource requirements. Too many deferrals CDR

can spell disaster. Fig. 12-12 Incremental Release Count

Rules of Thumb for Delivery Status Metrics quantify. It is important that the contractor
have the right mechanisms in place for proper

(a) The number of CSUJ, per release should discipline and commitment to quality.
remain stable (within 10%).

12.6 REFERENCES
(b) Increments or "builds" should
demonstrate useful capabilities as early as 1. ASD Pamphlet 800-5, Software Develop-
practical. ment Capability and Capacity Review, H-1Q

Aeronautical Systems Division, Wright-Pat-
12.5 SUMMARY terson AFB, Oh 45433, May 1988.

Metrics should provide the program manager 2. Schultz, Herman P., Software Management
a tool for much greater visibility into the Metrics, Air Force Systems Command,
software development than in the past. The Electronic Systems Division, Report ESD-
metrics discussed in this chapter focused TR-88-001, May 1988.
primarily on tracking progress. There are
other techniques available to monitor product 3. Boehm, Barry W., Software Engineering
quality, although these are much harder to Economics, Prentice-Hall, 1981.

12-13

Chapter 13 Epilogue

CHAPTER 13

EPILOGUE

13.1 INTRODUCTION

Improve ments in software productivity are ment and acquisition policy restrictions, and,
coming slowly. Present conventional techni- the diverse backgrounds and training of the
ques for software production make use of players. The resulting situation might be
libraries of primitive functions or algorithms characterized as each player tossing require-
(See Figure 13-1). There is little carryover ments, designs, and comments over a wall to
from past developments. The primary one another. These constrained communica-
development effort is in-line with the delivery tions, and the unique and customized in-
of the software product or capabilities and is plementations which result from our present
dedicated to a single system. There is little ways of building software, usually require that
ability to leverage the development invest- the computer programmers play a key role in
ment and provide products for use on the next the delivery and transition of the system to the
system. The resulting system structure is user. In fact, in many systems even the system
typified by many unique modules with corn- designers and the system test group have a
plex interfaces requiring significant effort to difficult time discovering critical failure
integrate, test and maintain, modes and correcting problems economically

when they are discovered. The need to use
The communications among the various the software development organization
players (user, system designer, programmer) during transition is often underestimated;
involved in software development, accluisi- especially when the software development or-
tion, delivery and use is constrained. The con- ganization is not the prime contractor. The
straints arise from a number of factors prime usualiy phases out these programmers
including geography, personnel availability, and performs the final system test and opera-
lack of software development tools, procure- tional test and evaluation without them. Un-

13-1

Chapter 13 Epilogue

Process _ _ _ _ _ - _

] System Program Code Test

User -- - Design and CPCI Test -- User

Development System Test .

Tools On-Une Developers

Simulators, PDL,
Requirement Configuration Test Support

Analyzers, Management, Generators Envihonments

WordWokec
Processors

Showroom System Structure

H:o .Compilers

Math- F Operating L ------ -
Functions Systems * -

Subroutine I Agorith

Libraries ____i . . . Developers

Fig. 13-1 Conventional Techniques

fortunately, cu rrent softwa:'e development development is required for the delivery of a
practice makes it difficult for the prime to software product or capabilities. This allows
perform these functions adequately. the off-line development effort to support a

larger number of systems.
There may be another way to build software
and overcome some of the drawbacks of our However, reusing software on multiple sys-
present techniques. A model of an alternate tems is a tough job. flow can the performance
software development technique is shown in and interface of the modules be described?
Figure 13-2. In this model, showrooms of Howwell can they be tested? What is their run
larger more capable pieces are developed off- time? How are they catalogued? Who owns
line for later integration and use in multiple the data rights? How are they guaranteed?
systems. The in-line activities are, therefore,
more heavily directed towards program in- The technology and the management in-
tegr.,tion than to des:ign and development. frastructure needed to fully exploit reusability
The testing emphasis is more on system test- is not yet available. Efforts in the STARS
ing than code or CSCI testing. Such an ap- program and at the Software Engineering In-
proach may support thc use of computer stitute are investigating the technical and
aided design and manufacturing management advances required to answer
(CAD/CAM) for software. The resulting sys- these questions and to bring reusability closer
tern ;tructure is more regular, has simpler to practice. In the meantime, greater use of
interfaces and is easier to test. Less in-line best existing practice, tailored acquisitioll

13-2

Chapter 13 Epilogue

Process

// - -•-\........ Program Design 1o eT s -
_p7,Oý ram ignCode TestSystem &,Development - -

User Deign Program ---- j CPCI Test User

tIntegrarson System Test

_Tools A__ ku Mesv __ __e

Prototypes, Simulators, PDL, Common

Simulated Synthesizers, CAD/CAM Test Support
Exercises Automated, On-Une Generators Environments

Catalog, Evrnet
Formal Specs Function Libraries

Showroom System Structure

1 71
[T-rackers a L acages_. t

Resource LManagesr j

Gene~rat or f
Processor Message 1 Of-ALinneF T-Handlers •

- - -Developers

Fig. 13-2 Reusability

strategies, and improvement of tools and How is it then that most cost estimators adver-
techniques are required to help manage the tise techniques which purport to provide 10 to
software acquisition process. 20% accuracy? Most of these estimates make

use of regression analyses and deal with the
13.2 SOFTWARE COST UNCERTAINTIES process from the perspective of the right end

of the curve. With present techniques, if you
Because the current nature of the software want better accuracy, you have to do some-
development process is more like model shop thing to move toward the greater experience
or custom tailoring than like mass production, part of the curve.
software cost estimating accuracy is a very
strong function of the programn phase. The This can be done by building prototypes,
uncertainty in the software development making use of previously designed and
process is capturcd in Figure 13-3 [1]. Errors developed products, using commercial off-
on the order of 4 to I are likely when estimat- the-shelf software, or filding an acquisition
ing software costs at the start of a project. strategy which includes a contract definition

phase or incremental development. A
lhese early cost estimates require difficult strategy is needed to delay major fund com-
judgments of complexity. productivity and mitments unt'l better software requi-cments
size. Experience indicatcs that the curve aad implementation definitions are obtained.
should be one-sided because software costs
are ,never overestinated; they are always un- Early software cost estimating may be likened
derestimated. to the story of the old farmer who had a unique

13-3

Chapter 13 Epilogue

4x

2x

1t.5x -

Relative
1.5x

Cost 1.25x

Range -- __-__ _

0.8x -

0.67x

0.5x

/

Product Detailed
Concept of Requirements Design Design Accepted
Operation Specifications Specifications Specifications Software

0.25x -hO.5 A A A A

Fig. 13-3 Software Cost Estimating

way of estimating the weight of pigs (See Fig- ment phase, a production phase and a deploy-
ure 13-4). "I don't need any of these new- ment phase. In most Command, Control and
fangted scales to do that," he said. He had an Communications (C3) systems acquisitions
easy way toweigh pigs without scales. Helaid and in many non-developmental item (NDI)
a plank across a pail, put a stone on one end, acquisitions, the normal weapon life cycle is
a pig on the other, and balanced the plank. compressed (See Figure 13-5) [2]. Although
Then he guessed the weight of the stone, a concept exploration phase may take place,
From that he could easily calculate the weight the demonstration/validation phase is
of the pig--to three significant figures. With generally omitted and the full scale develop-
current model shop techniques, one cannot ment and production phases are combined.
write better specifications or obtain better When no demonstration/validation phase is
cost estimates without first doing some part of present, time somehow must be allowed for
the job to he specified or estimated. definition and detailed design. Many acquisi-

tion schedules call for preliminary design
13.3 SOFTWARE ACQUISITION CYCLE reviews as soon as three months after contract

award. The contractor is forced to either ac-
The ideal acquisition cycle includes a concept complish the top level design in the proposal
exploration phase, a demonstration/valida- phase or in the short time available after
tion phase, a full scale engineering develop- award.

13-4

Chapter 13 Epilogue

-` y

...

Fig. 13-4 Estimating Techniques

The use of top-down design has been recom- ing better user insight and lessening the
mended as an orderly and disciplined way to misunderstanding that arises from just look-
develop and test software. For new programs, ing at paper requirements and specifications.
however, one cannot peiform top down They also help reveal implementation dif-
design and development without some ficulties or constraints.
knowledge of the bottom (See Figure 13-6).
One must have some assurance that alloca- Prototypes generally make use of special
tions of requirements, from one baseline to operating procedures and operating systems
the next, will still be valid when the lower level and have limited interfaces and loading. They
designs are developed. Historically, most Air have no provisions for startover, continuity of
Defense programs have run out of processing operation, or maintenance, and use corn-
resources as a result of not understanding the puters and code that are not intended for the
need to carefully sort tracks before attempt- target system. Too often the government uses
ing radar data correlation. Prototypes of the the information from the prototype to
difficult parts help validate requirement al- generate high level system performance
locations and avoid breakage and rework, specifications for competitive bid with a new

set of contractors. Much of the experience
13.4 PROTOTYPES gained from the prototype development is lost

in the process if the prototype developer is not
Prototypes are useful in two ways. They help the winner. With today's state-of-the-art
resolve requirements uncertainties by provid- software production techniques, it is very dif-

13-5

Chapter 13 Epilogue

Idealized Cycle

Concept V Demonstration/ Full-Scale PoutoLExplorto Validation Delopmn Deplyet-

S.......... -- ---- -........... ----------.......
Usual C3Cycle N K .

-Cnxepota-.on Full r-ScaIe Developme - .nt!/Depl
Ex7l Production Dpomn

Fig. 13-5 System Acquisition Cycle

ficult to convert a developer's experience into manage the requirements and implementa-
specifications of sufficient quality to allow tion uncertainties.
someone else to gain that knowledge and ex-
perience. Unless the original players, both 13.5 SCHEDULES AND MANNING
user and development contractor, remain the
same and the early prototype is very close to The amount of time the government allows
the end item, a second prototype must be for design, and the rate at which the contrac-
built. Otherwise, some strategy such as in- tor staffs the software development activity,
crernental development must be used to help have a major impact on the success of the

"You can't do top down
without knowledge
of the bottom"

A. Roberts

Fig. 13-6 Top-Down Design

13-6

Chapter 13 Epilogue

EXPERINCE PROPOSED design analysis and breadboarding of the dif-
..... ficult parts of the job and to perform some

. -.. / work at a level below the level one is attempt-
ing to baseline. This allows for the validation
of the top level design and performance al-
location before building up the development
team. The experience on several ESD

......... 8 TIME 2,' 3W 4 programs indicates that with existing practice
PDA CR, TAR ops development specifications are not comn-

pleted until 10-15 months after contract
Fig. 13-7 Software Manpower Phasing award. This is a true measure of the time

program. Devenney [3] examined 16 major needed for validating top level designs (See
acquisition programs at the Electronic Sys- Figure 13-8).
tems Division (ESD) at Hanscom AFB, Mas-
sachusetts. He found that in every case the Over time the schedule for the PDR has been
contractor manned up quickly and that the been moved up and is now generally six
manning level was constant throughout the months after contract award. What do all
program. The absence of a demonstra- those people do while the top level design is
tion/validation phase and the requirement to being developed? They start into detailed
hold PDR in the first few months of the con- design and coding in order to meet schedule.
tract forced this manning profile. More than This premature design and code must often be
ten years ago, Roberts [4] suggested a revised redone. The changes and uncertainties lead to
manning profile and model schedule for the frustration and poor morale for the team.
early design activities leading to PDR and
CDR (See Figure 13-7). The intent of this In updating his COCOMO model for Ada
manning profile is to allow more time for implications, Barry Boehm has suggested a

Months

0 4 8 12 16 20

SYSTEM A

Software Req. Specs (SRS)

Preliminary Design Review (PDR) * .

Critical Design Review (CDR)

SYSTEM B

SRS

POR

CDR

SYSTEM C
SRIS

PDR [

CDR

Planned Completion Actual Completion

Fig. 13-8 Experience Example

13-7

Chapter 13 Epilogue

some difficulty in usefully contributing". A
similar phenomenon has been reported by
Brooks in The Mythical Man-Month [6].

C-)
CD-
, -If 0-1, schedule for a previous job was longer> cv than dcs;red as the result of over-staffing, the

--C tendency may be to add more people to im-
prove the schedule on the next job. This will
happen if the inter-dependent nature of the
tasks and the over-staffing are not under-
stood. Care must be taken in using past ex-

NUMBER OF PEOPLE perience to set objectives for future jobs.
Fig. 13-9 Productivity

schedule similar to the one shown in Figure The size job a given organization can handle
13-7. He allows time before the PDR to com- is not only a function of the available number
pile the PDL statements, validate interfaces, of qualified and experienced personnel. To
and perform semantic checks. The longer some extent, jobs can be balanced with
time produces a more orderly process with resources. When the job grows in size, coin-
less breakage and rework. plexity, and interdependence, the developer

must provide appropriate infrastructures (i.e.,
13.6 TEAM SIZE AND MANAGEMENT organization and documentation) to support

technical interchange, progress reporting,
Large, complex software jobs often require and increased span of control (See Figure
hundreds of people. An article [5] by the 13-10). If a large job is broken into pieces to
people who managed Sidewinder, a very suc- get it accomplished, a mechanism must be
cessful air-to-air missile, addresses the size devised for pulling it back together again.
and behavior of research and engineering
teams. It poin~ts out that the nature oIf com-
plex acquisitions is such that the assignment Jobs Resources

of too few people may require an infinite time
to complete the job. On the other hand, the
assignment of additional engineering person-
nelabove a certain level may not only propor- nracstrucure /
tionately reduce total time, but may, in fact, Jobs / Resou,,es /
increase the total time to accomplishment / /
(See Figure 13-9).1 oTl MetrIs 9 a / ri

The author of the referenced article recalls m
being asked in grade school to solve the fol-
lowing problem: "If two men can dig a well in Fig. 13-10 Management
eight hours, how long does it take four men to Failures often occur when firms take on larger
dig the same well". He "... can recall being jobs than they have previously undertaken.
haunted by the suspicion that perhaps there They generally use a small team and face-to-
was only room down tile well for two men; in face communications for coordination and
which case the extra two men might have control. When the number of people grows,

13-8

Chapter 13 Epilogue

there are no established procedures, tools or beards), software exercises, and contractor
documentation to support the necessary tech- capability assessment techniques to aid the
nical and management interchanges, selection process. Include the support re-

quirements for these activities in the RFP.
13.7 ASSESSING PERFORMANCE

Allow time for design and iteration. Don't
There are a number of new techniques for baseline without some experience at lower
assessing a contractor's experience, tools and levels of design.
procedures. Visits to contractor facilities by a
team of experienced government software Make maximum use of off-the-shelf software.
personnel duriig source selections are being Try to make the job smaller and more
used. The team assesses and verifies contrac- manageable. Change the requirements for
tor experience, maturity of procedures, well defined, less critical functions to fit with
quality management capabilities and job un- available packages.
derstanding. At ESD these teams are called
"Greybeards." At the Aeronautical Systems Breadboard and prototype the difficult parts
Division, they are called "Capability/Capacity of the job. Prototypes help the user see what
Review Teams" (See Chapter 8). Work at the he is getting and help the developer under-
Software Engineering Institute and at stand implementation difficulties.
MITRE Corporation [7] has led to a process Prototypes generally are not suitable for the
for assessing the software engineering end product unless they have been especially
capability of contractors. At ESD a short designed for that purpose.
software engineering exercise has been
designed to audit the contractor's use of Schedule preliminary design reviews consis-
proposed tools and procedures. tent with the degree of validation. Don't

force contractor top level designs to be ac-
In addition, a set of metrics has been complished in the proposal stage. Allow time
developed for use by the contractor during the to validate the top level design.
software development process as an aid
visibility and control [8]. A number of con- Apply discipline and new tools. Contractors
tracts now require the use and reporting of should have a good software development
metrics. The cost for this should not be high plan, established procedures, and tools to aid
since a competent contractor normally development, configuration management,
generates metrics for his own internal use. test generation, and status keeping.

13.8 MANAGEMENT GUIDANCE Require metrics for visibility and control.
The contractor should have his own means for

Software development and ac(uisition is dif- determining status and the rate of progress.
ficult and will remain so for several years. Trends are the basis for predicting future
Actions are required to overcome the progress. Impose the requirement to
roadblocks associated with the present generate and use metrics on the contractor.
process.

Have more than one phase. Have a place to
Choose a gaod contractor. During source put new requirements instead of impacting
selection use in-plant inspections (Grey- ongoing efforts. Use the second phase to deal

13-9

Chapter 13 Epilogue

with shortfalls in the first phase. Often the ing at the Electronic Systems Division,"
user no longer wants the capabilities which Masters Thesis, Air Force Institute of Tech-
were thought desirable early in the process. nology, July 1976.

Deliver in useful increments. Try to keep the 4. Roberts, Alan J., "ESD System Acquisition
deliveries consistent with the degree of Practices - Design Reviews," The MITRE
knowledge one has developed of require- Corporation, Internal Memo, May 1977.
ments and implementation difficulties. To
avoid retraining, design user interfaces so that 5. Kirschner. R. B., "The Size of Research and
they don't change with each increment. Engineering Teams," Proceedings of the 11th

National Conference on the Administration of
Maintain schedule; deliver, then add. Every Research, Pennsylvania State University
schedule change opens the door to new re- Press, September 1957.
quirements. Delivery provides performance
feedback--necessary for further evolution. 6. Brooks, F. P., The Mythical Man Month,

Addison-Wesley, 1975.
13.9 REFERENCES

7. "A Method for Assessing the Software En-
1. Boehm, Barry W., Software Engineering gineering Capability of Contractors,"
Economics, Prentice Hall, 1981. Software Engineering Institute, ESD-TR-87-

186, CMU/SEI-87-TR-23, 23 September
2. Roberts, Alan J., "Some Software Implica- 1987.
tions of System Acquisition," Signal Magazine,
July 1982, pages 19-25. 8. Schultz, Herman P., Software Management

Metrics, ESD-TR-88-01 1, May 1988.
3. Devenney, Capt. Thomas J., "An
Exploratory Study of Software Cost Estimat-

13-10

Appendix A Ust of Acronyms

APPENDIX A

LIST OF ACRONYMS

ACVC Ada Compiler Validation Capability CI Configuration Item
ADAMAT Ada Measurement & Analysis Tool CIDS Critical Item Development Spec
ADP Automatic Data Processing CM Configuration Management
AFSCP Air Force System Command Pamphlet CMP Configuration Management Plan
AFLC Air Force Logistics Command CPU Central Processing Unit
AFB Air Force Base CRISD Computer Resources Integrated
AFR Air Force Regulation Support Document
AIS Automated Information Systems CRWG Computer Resources Working Group
AJPO Ada Joint Program Office CSC Computer Software Component
AMC Army Materiel Command CSCI Computer Software Configuration Item
ANSI American National Standards Institute CSOM Computer System Operator's Manual
APSE Ada Programming Support Environment CSU Computer Software Unit
ASCII American Standard Code for Information CRLCMP Computer Resources Life Cycle

Interchange Management Plan
ASDP Aeronautical Systems Division Pamphlet
ATE Automatic Test Equipment CRWG Computer Resources Working Group
ATA Advanced Tactical Aircraft
ATF Advanced Tactical Fighter DARCOM U.S.Army Material Development &
ATVS Ada Test and Verification System Readiness Command
AVF Ada Validation Facility DCMC Defense Contract Management Command
AVO Ada Validation Organization DCP Decision Coordination Paper

DID Data Item Description
BIT Built-in-test DOD Department of Defense
BITE Built-in-test Equipment DODD Department of Defense Directive

DOD-STD Department of Defense Standard
CAD/CAM Computer Aided Design/Computer DSB Defense Science Board

Aided Manufacturing DT&E Developmental Test and Evaluation
CET Capability Evaluation Team D/V Demonstration and Validation
CCB Configuration Control Board ECP Engineering Change Proposal
CDR Critical Design Review ECR Embedded Computer Resources
CDRL Contract Data Requirements List EPROM Erasable Programmable ROM
CE Concept Exploration EEPROM Electrically Eraseable PROM
CLIN Contract Line Item Number ESD Electronic Systems Division (USAF)

A-1

Appendix A Ust of Acronyms

FAR Federal Acquisition Regulations PM Program Manager
FCA Functional Configuration Audit PMD Program Management Directive
FQR Formal Qualification Review PMP Program Management Plan
FQT Formal Qualification Test PMRT Program Management
FSD Full Scale Development Responsibility Transfer
FSM Firmware Support Manual PO Program Office

PROM Programmable Read Only Memory
II()L Higher Order Language
IIWCI Hardware Configuration Item QA Quality Assurance

IC Integrated Circuit RAM Random Access Memory
ICBM Inter-Continental Ballistic Missile R&D Research and Development
ICS Interpretative Computer Simulation RF Radio Frequency
ICWG Interface Control Working Group RFP Request for Proposal
11DI) Interface Design Document ROM Read Only Memory
IEEE Institute of Electrical and Electronics

Engineering SCM System Concept Paper
ILSP Integrated Logistics Support Plan SCP System Concept Paper
INS Inertial Navigation System SCRB Software Configuration Review
1/0 Input/Output Board
IOC Initial Operating Capability SDCCR Software Development Capability
IR&D Independent Research and Capacity Review

Development SDF Software Development Folder (File)
IRS Interface Requirement Specification SDL Software Development Library
ISA Instruction Set Architecture SD)P Software Development Plan
IV&V Independent Verification and SDR System Design Review

Validation SEI Software Engineering Institute
SIL Systems Integration Laboratory

JLC Joint L)gistics Commanders SIF Systems Integration Facility
SLOC Source Lines of Code

KAPSE Kernal Ada Programming Support SON Statement of Need
Environment SOW Statement of Work

SP'D System Program Director
LAN Local Area Network SPM Software Programmer's Manual

SPO1 System Program Office
MCCR Mission Critical Computer Resources SPR Software Problem Report
MIL-STD Military Standard SlPS Software Product Specification

SRR Systems Requirements Review
NCSC National Computer Security Center SRS Software Requirements Specification
NI)! Non-Developmental Item SSA Software Support Activity
NIST National Institute of Standards SSA Source Selection Authority

and Technology SSAC Source Selection Advisory Council
SSEB Source Selection Evaluation Board

OFP Operational Flight Program SSi)D System/Segment Design Document
O&M Operation and Maintenance SSS Source Selection Plan
OMlI Office of Management and Budget SSR Software Specification Review
OOD Object Oriented Design SSS System/Segment Specification

)Si Office of Secretary of Defense STARS Software Technology for Adaptable Reliable
OT&E Operational Test and Evaluation Systems
PC Personal Computer STI) Standard
PCA Physical Configuration Audit STE Special Test Equipment
PI)L Program Design Language ST1P Software Test Plan
PI)R Preliminary Design Review STR Software Test Report
P[DSS Post-Deployment Software Support SUM Software User's Manual
PII)S Prime Item Development Spec S/W Software

A-2

Appendix A Ust of Acronyms

TADSTAND Tactical Digital Systems Standard UDF Unit Development Folder
T&E Test and Evaluation
TEMP Test and Evaluation Master Plan VDD Version Description DocumentTO Technical Order VIISIC Very High Speed Integrated Circuit
TPS Test Program Set
TRR Test Readiness Review WBS Work Breakdown Structure

A-3

Appendix 8 Glossary of Terms

"APPENDIX B

GLOSSARY OF TERMS

Address
Specifies the location of word, data or in- language instructions and operands in place
struction in memory. of binary (Os and 1s) machine codes.

Allocated Baseline Bit
The development specification which defines A binary digit whose value is either a 1 or a 0.
performance requirements for each CSCI.

Built-in Test Equipment (BITE)
Analog Any device permanently mounted in the
Being or relating to a mechanism in which prime equipment and used for the express
data is represented by continuously variable purpose of testing the prime equipment,
physical quantities [1]. either independently or in association with

external test equipment.
Assembler
A computer program that translates assembly Byte
language instructions into machine language. Eight (8) bits.
Typically one assembly language instruction
is translated into one corresponding machine Buss
language instruction. Both the assembly and See Digital Data Buss
machine languages are unique to a particular
computer. Central Processing Unit (CPU)

Fetches, decodes and executes the instruc-
Assembly Language tions of the computer program. The major
Assembly language allow the use of ab- determinant of a compL.er's execution spee'.
breviated names (mnemonics) for machine Sometimes called the "engine".

B-i

Appendix B Glossary of Terms

Compilation or Compiling puter and external devices, that provide a
The translation process accomplished by a communication path for digital data.
conmpiler.

Error Message
Compiler A message printed out by a computer after
A computer program which translates a HOL 'detecting a programming error.
into machine language. The HOL statements
are called source code and the output of the Emulator
compiler is called object code. A combination of computer programs and

computer hardware that mimic the instruc-
Component tions and execution speed of another com-
A Computer Software Component (CSC) is a puter or system.
distinct part of a computer software con-
figuration item (CSCI). CSCs may be further Executive
decomposed into other CSCs and Computer The operating system in an avionics suite.
Software Units (CSUs).

Expert Systems
Computer Program Systems that utilize artificial intelligence (Al)
A series of instructions or statements in a to perform their functions.
form acceptable to computer equipment and
designed to cause the execution of an opera- Firmware
tion or series of operations. Computer Computer programs and data that have been
programs include such items as operating sys- written into read only memories (ROV~s).
tems, assemblers, compilers, interpreters,
data management systems, utility programs, Formal Qualification Review (FQR)
and maintenance or diagnostic programs. A system level configuration audit conducted
They also include application progra ns such after system testing is completed to ensure
as payroll, inventory control, operational that the performance requirements of the sys.-
flight, strategic, tactical, automatic test, crew temn specification have been met.
simulator, and engineering analysis programs.
Computer programs may be either machine- Functional Baseline
dependent or machine-independent, and may The system requirements. Provides basis for
be general purpose in nature or designed to contracting and controlling the system design.
satisfy the requirements of a specialized
process or particular users. Functional Configuration Audit (FCA)

The formal examination of test data to deter-
Debugging mine the functional characteristics of a CSCI,
The process of locating and eliminating errors prior to acceptance, to verify that the item has
that have been shown to exist in a computer achieved the performance specified in its
program. functional or allocated configuration iden-

tification.
Digital Data Buss
A group of circuits and interconnections be- Hligher Order Language (11OL)
tween two or more devices, such as between Higher order languages have been developed
the CIU and memory or between the com.- in order to make writing and understanding

13-2

Appendix B Glossacy of Trrnis

programs easier. In a HOL, the program is operation code (or op-code) and one or more
written in a series of statements which typical- operand fields. The operation code specifies
ly resemble mathematical formulas or the computer function (e.g., add, subtract, test
English expressions. for zero) to be performed while the operand

fields specify where in the computer the data
Host Computer for that function is located.
The computer on which a compiler executes.

Maintainability
Initial Operating Capability (IOC) The ability of an ilem to be retained in or
The first capability attainment to employ ef- restored to specified condition when main-
fectively a weapon system, an item of equip- tenance is performed by personnel having
ment, or system of approved characteristics, specified skill levels, using piescribed proce-
and which is manned or operated by a trained, dures, resources, and equipment at each
equipped, and supported military unit. prescribed level of maintenance and repair.

Integrated Circuit (IC) Microprocessor
Tiny complex of electronic components and A Central Processing Unit (CPU) con-
their connections that is produced in or on a structed from one large scale integration
small slice of material such as silicon [1]. The device or chip.
basic building blocks of modern electronics.

Model
Intermediate Language A model is a representation of an actual or
An assembly-like language used by a compiler conceptual system that involves mathematics,
as an interim step in the process of compila- logical expressions, or computer simulations
tion. that can be used to predict how the system

might perform or survive under various con-
Interpreter ditions of in a range of hostile environments.
A computer program that converts and ex-
ecutes a VIOL source program statement Module
directly into machine language, one state- See Unit
ment at a time.

Module Testing
Linker The execution of a single module to deter-
A -omputer program that links or ties mine its correctness before the module is
together programs that have been separately combined or integrated with other modules.
compiled or assembled.

Mnemonic
Loader Symbolic names for machine language in-
The computer program that loads the coin- structions which allow a programmer to
puter program into memory. generate programs in assembly language

without having to use binary codes.
Machine Language
The binary codes (Os and ls) which are under- Operating System
stood directly by a computer. A typical A computer program that controls the cxccu-
machine language instruction consists of an tion of other comp)uter programs in a coni-

B-3

Appendix B Glor'ry of Terms

puter. It schedules the time when computer testing and training. A threat simulator has
programs are run, assigns memory, and one or more characteristics which, when
provides diagnostic and accounting informa- detected by human senses or man-made sen-
tion about a program's execution. sors, provide the appearance of an actual

threat weapon system with a prescribed de-
Patching grec of fidelity.
Making changes to the machine code (object
code) representation of a computer program Software
and by-passing the compiler. The combination of computer programs or

instructions required to cause the computer
Regression Testing hardware to perform a certain task or tasks.
The testing of a program to confirm that func-
mions, that were previously performed cot rect- Stub
ly, continue to perform correctly after a A stub takes Lhe place of a module that has not
change has been made. yet been coded or tested.

Rehosting Syntax
Modifying a computer program so that it The rules for writing computer programs in a
operates on a different host computer. particular programming language.

Reliability Syntax Error
The probability that an item will perform its A syntax error is generated when a program-
intended function for a specified interval mer has violated the rules of a particular
under stated conditions. programming language.

Retargeting Target Computer
Modifying a compiler so that it generates ob- The computer for which the compiler
ject code for a different target computer. generates object code.

Simulation Testbeds
A simulation is a method for implementing a A system representation consisting partially
model. It is the process of conducting experi- of actual hardware and/or software, and par-
ments with a model to understanding system- tially of computer models or prototype
behavior under selected conditions or of hardware and/or software.
evaluating various system operational
strategies within the limits imposed by Test Program Set (TPS)
developmental or operational criteria. Computer programs written in a HOL, usual-
Simulation may include the use of analog or ly ATLAS, used in conjunction with automat-
digital devices, laboratory models, or ic test equipment (ATE) to isolate a failed
"testbed" sites, electronic subsystem or component. TPSs

typically are used to generate and inject test
Simulator patterns into digital circuit boards or
A generic term used to describe a family of electronic "black boxes". Modern electronic
equipment used to represent threat weapon components are too complex to be manually
systems in development testing, operational tested.

B-4

Appondix B Glossary of Terms

Unit Word
A Computer Software Unit (CSU) is the A data packet of information for the corn-
smallest testable element specified in a Coin- puter. It is usually composed of many bits,
puter Software Component (CSC). The length of a computer word typically ran-

ges from 8 bits for microprocessors to 64 or
Validation more bits for the larger computers. The
The process of confirming that the software memory of a computer is divided into seg-
(i.e., documentation and computer program) ments called words.
satisfies all user requirements when operating
in the user's environment. REFERENCES

Verification 1.Webster's Ninth New Collegiate Diction-
The prc'cess of confirming that the products ary, Merriam-Webster Inc., Springfield, MA,
of each software development phase (e.g., re- 1984.
quirements analysis, design, coding, testing)
are complete, correct, and consistent with
respect to the products of the previous phase.

B-5

Appendix C Outline of Program Manangement Plan

"APPENDIX C

OUTLINE OF PROGRAM MANAGEMENT PLAN

Table C-1 shows a typical outline of a Program however, will be limited to those sections
Management Plan (PMP) based on AFR 800- which must address MCCR.
2, Acquisition Program Management, Attach-
ment 3. The other services use a similar C.1 INTELLIGENCE (Sect 2)

1 Program Summary and Authorization This section includes:
* 2 Intelligence

* 3 Program Management (a) Identification or the Threat. This para-
* 4 Systems Engineering and Congiguration graph should consist of a listing of all relevant
* 5 Test and Evaluation threats that have been obtained from the

6 information Systems Defense Intelligence Agency (DIA) or other
7 Operations DOD or armed service agency. Since
8 Civil Engineering software will probably be the major player in
9 Logistics countering these threats, it is important that

S10 Manpower and Organization the entire spectrum of threats be addressed.
11 Personnel Training
12 Security (b) Identification of Relevant Foreign Tech-
13 Directives, Specifications, & Standards nology. Since the U.S. is no longer the un-

* Addresses MCCR disputed world leader in technology, it is
important that foreign technology, especially

Table C-I PMP Outline that of our allies, be examined to determined
outline. Note that six of the sections must whether any of it can be used in the proposed
address mission critical computer resources system. Our European allies, for example,
(MCCR). Depending on the program, there have embraced Ada, the DOD standard comn-
may be other sections that may also need to puter language, with fervor and have made
address software. The discussion that follows, significant strides in the airea of Ada software

C-1

Appendix C Outline of Program Manangement Plan

tools. Some of these tools, particularly corn- C.4 TEST AN1) EVALUATION (Sect 5)
pilers and Ada code analyzers could be useful.

This section addresses DT&E and OT&E
C.2 PROGRAM MANAGEMENT (Sect 3) schCdules including tile overall software test

and integration schedules. It also describes
This section provides a description of the oh- the major softtware support tools and major
jectives and program strategy (or approach) test facilities required.
in somewhat more detail than Section 1. At a
minimum, tie schedules contained in this see- C.5 MANPOWER AND ORGANIZATION
tion should include the following: (Sect 10)

(a) Operational system software development This section describes the organization of the
schedules; program office and sumnairize tile relation-

ships and roles of other military and govern-
(b) Training schedules including the p)rocure- ment agencies and laboratories. In particular,
nierit and development of all maintenance it describes the software organization and its
and operational crew trainers; relation to the other program office organliza-

tions. It also addresses the required software
(c) Support equipment development and manpower and skill levels along with possible
delivery schedule including ATE and other sources of key software personnel.
software intensive special test equipment;

C'.6 DIRECTTIVES, SPECIFICATIONS,
(d) Development and delivery schedule for AND STANI)ARI)S (Sect 13)
the TPSs associated with the AT'E.

This section lists all tile directives, specifica-
C.3 SYSTEMS ENGINEERING & CON- tions, and standards that will be inlposed on
FIGURATION MANAGEMENT(Sect 4) the programl including those related to

software and computers. F or example, if the
This section should describe when aid 1how data buss standard, MIIL-STD-155313, or the
tile fu nction1s of hardware and software con- Adca l)rogimlnling llangu age standard, MIL-
figuration mallagement will be accomplished STD'>- 181 5, is ilaplI•()riatc, tile reasonls wily
to include the Configuration Control Board it is So sIMl Id be stated in this section and the
(C'CB) and tile Software CCB. waiver process initiated.

(c-2

Appendix D Test and Evaluation Master Plan Outline

"APPENDIX D

TEST AND EVALUATION MASTER PLAN OUTLINE

The Test and Evaluation Master Plan TEMP. It shall describe the physical hardware
(TEMP) is a key program management docu- tests, software tests, systems tests, simula-
ment whose primary purpose is to describe all tions, and any analyses needed to provide data
the necessary system Developmental Testand not available through actual testing. In par-
Evaluation (DT&E) and Operational Test ticular the following sections should specifi-
and Evaluation (OT&E). It relates program cally address MCCR issues:
schedules, test management structure and re-
quired resources to critical operational issues, D.1 SYSTEM DESCRIPTION (Part 1.2)
critical technical characteristics, required
operational characteristics, evaluation This section briefly describes the system
criteria and decision milestones. The formal design to include the following items:
outline for the TEMP is given in DOD Direc-
tive 5000.3-M-1 and it is shown in Table D-1. (a) Key features and subsystems, both
The TEMP is broken up into five major sec- hardware and software, allowing the system to
tions and three appendices. Hardware and perform its required operational mission;
software thresholds are to be included in the

PA^RTI SYSYEM DI,7AS (b) Unique characteristics of the system or
PAT.l , 1,(XIRAMM SUMMARY unique support concepts resulting in special
,ART III D•rAH Otl• N•H test and analyses requirements such as threat
PART IV MAE&H OIT.LINE simulations or other system simulators.
PART V TM&; RU'SOURCH SUMMARY

AI'PPNDIX A BIBLR'iRAIPHY D.2 CRITICAL TECHINICAL CHIARAC-
AII'D.NIIX II ACRONYMS TERISTICS (Part 1.3)
APPENDIX C(POINrIN O CONTAMT

ANNFXS (if A•,),l,,m,-,atC This section lists in matrix format the critical

Table D-1 TEMP Outline technical characteristics or the system that

D-1

Appendix D Test and Evaluation Master Plan Outline

have been evaluated or will be evaluated D.6 TEST ARTICLES (Part V.l.a)
during the remaining phases of development
testing. For MCCR, this characteristics in- This section should identify the actual num-
clude: speed of calculation, memory utiliza- ber and timing requirements for all test ar-
tion, throughput capability, reliability ticles, including key support equipment and
(growth), and response time. technical information required for testing of

each phase. If key subsystems (components,
D.3 DEVELOPMENTAL TEST AND assemblies, subassemblies or software
EVALUATION OVERVIEW (Part Ill.1) modules) are to be tested individually, before

being tested in the final system configuration,
This section of theTEMP how the planned (or identify each subsystem in the TEMP and the
accomplished) DT&E will verify the status of quantity required.
the engineering design, verify that design risks
have been minimized, and substantiate the D.7 THREAT SYSTEMS/SIMULATORS
achievement of technical performance. (Part V.1.d)
Specifically the narrative should identify the
degree to which system hardware and This section should identify the type, number
software design has stabilized so as to reduce and availability requirements for all threat
manufacturing and productions uncertainties. systems/simulators. It should also compare

the requirements for threat sys-
D.4 SOFTWARE TEST AND EVALUATION tems/simulators with available and projected
(Part III.4.C) assets and their capabilities. Major shortfalls

should be highlighted.
In this section all software testing of MCCR
required to demonstrate a quality product, D.8 SIMULATIONS, MODELS AND
including post-milestone III updates as called TESTBEDS (Part V.1.g)
out in DOD Directive 5000.3-M-3, Software
Test and Evaluation Manual and DOD Direc- This section should identify the system
tive 5000.29, Management of Computer simulations required, including computer-
Resources in Major Defense Systems. driven simulation models and hardware-in-

the-loop testbeds. The rationale for their
D.5 OT&E EVENTS, SCOPE OF TESTING, credible use or application must be explained
AND SCENARIOS (Part V) before their use.

This section should identify planned sources D.9 SPECIAL REQUIREMENTS (Part
of information (e.g., development testing, V.1.h)
modeling and simulations) that may be used
by the operational test agency to supplement This section should discuss requirements for
this phase of OT&E. Whenever models and any significant non-instrumentation
simulations are to be used, the rationale for capabilities and resources such as special data
their credible use should be given, processing and special databases

D-2

Appendix E Integrated Logistics Support Plan Outline

APPENDIX E

INTEGRATED LOGISTICS SUPPORT PLAN (ILSP)
OUTLINE

"Fable E-1 shows a typical outline of an ILSP.
Guidance for this document is found in MIL- SECTION I: GENERAL

STD-1369A, Integrated Logistics Support Pro- - System Description (GFE and associated SE)

gram Requirements (Final Draft), The - Program Management Organization

following sections should address Mission and Responsibilities

Critical Computer Resources (MCCR). - Applicable Documentation

SECTION II: GOALS AND STRATEGY
E.1 MAINTENANCE CONCEPT Operation and Organization Concept

- Maintenance Concept
This section normally describes the three -System Readiness Objectives
traditional levels of maintenance: organiza- - Logistics Acquisition Strategy

tional or field level maintenance, inter- -LSA Scope and Tasks

mediate level maintenance, and depot level -Supportability T&E Concepts/Issues

maintenance. Since modern weapon systems -ILS Elements
are heavily dependent on electronics, this sec- Suppport Funds

tion will discuss the types and number of auto- -Post Fielding Assessment

matic test equipment (ATE) contemplated SECTION IlII: ILS MILESTONES SCHEDULE

for the three levels of support; the associated
Test Program Sets (TPS) which are used in ILS Compnto Pgram MilteS* ILS Elements (OFE and associated SE)

conjunction with the ATE to isolate failed Assignments, Responsibilities and Events
electronics components; and any other com-
puter and software-dependent piece of Table E-1 ILSP Outline
calibration or test equipment.

E-1

Appendix E Integrated Logistics Support Plan Outline

E.2 LOGISTICS ACQUISITION and training devices and computer resources
STRATEGY support.

This section summarizes the strategy E.4.1 Training and Training Devices
described in the Acquisition Plan. For
software and computers, this section should This section describes how training and train-
describe how the logistics support software ing devices requirements are met and who is
will be acquired. For example, who will responsible for meeting these requirements.
develop the ATE and TPSs: the prime Since this usually requires complex and corn-
developer, a subcontractor, or another puter-intensive trainers, it should identify the
government agency? Will the program office various types and numbers of trainers, their
delegate the responsibility for acquiring the anticipated location, and availability dates.
ATE and TPSs to another government agency Examples of some of the potential trainers
(as it is often done in the Air Force)? Bear in required are: avionics maintenance trainers,
mind that development by anyone other than weapons loading trainers, and ATE trainers.
the prime contractor involves additional con-
tractual considerations (e.g., separate RFPs, E.4.2 Computer Resources Support
source selections, and contracts). How will
calibration and special logistics support and This section describes the facilities, hardware,
test equipment be acquired? software, documentation, manpower, and

personnel needed to operate and support the
E.3 SUPPORTABILITY T&E CON- embedded computer systems. Particular at-
CEPTS/ISSUES tention should be paid to the ATE and the

associated TPSs required to isolate problems
This section describes the planned suppor- in Line Replaceable Units (LRUs) and
tability test and evaluation concept, its scope electronic circuit cards. Organic maintenance
and objectives. In particular, it addresses test and support cannot be initiated until the ATE
and evaluation of built-in or supporting auto- and the TPSs are delivered. This section
matic operating, testing, and maintenance should also describe the plansfor determining
equipment, and associated software. firmware and software support and Post

Deployment Software Support (PDSS) pro-
E.4 ILS ELEMENTS cedures, requirements, and responsibilities. It

should identify the requirement for prepara-
This section addresses all the ILS elements tion of a Computer Resources Life Cycle
tailored to each specific phase of the acquisi- Management Plan (CRLCMP) as an annex to
tion. Two software intensive areas are training the ILSP.

E-2

Appendix F CRLCMP Outline

APPENDIX F

COMPUTER RESOURCES LIFE CYCLE MANAGEMENT
PLAN (CRLCMP) OUTLINE

Table F- I ShOWS the CRI-I-M P format found port concept for the system and for the
in Attachment 11 of AFIR 800-14, liJf, Cycle software.
Manageient of Comaliter Resources in s5'v-
teuns. Although the other services do not have F.3 SYSTEM DESCRIPTION
a standard format, the formats used are very
similar. States the purpose of the operational system

and describes how the computer resources
F.I INTROUIUCTION relate to tie overall operational system. Iden-

tifies and describes the characteristics and
This section states thie p rposel of the functions of the processors in the system and
CRI l NMI, lists the approved system the In ictions to be implemented in software
nomenclature, and lists the appropriate re- or firmware.
(lUirements documents such as the Statement
of Need (SON) and the System Operational F.4 COMPUTER RESOURCES DESIGN
Concept (SOC).

This section addresses the following:
F.2 SYSTEM CONCEITTS

(a) System Architecture and Design - Iden-

This section describes the system operational titles tih required hardware and software ar-
and support concepts. It briefly describes the chitectures tfor the system.
mission of the system with i emphasis ol comi -

pUter resources; identifies the system frune- (b) P'roduct Improvements - Identifies parts
tions which are expected to require fIrequent of the system which will most likely require
changes to accomlmo(l'te the operational en- future expansion (e.g., memory size, process-
vironme t; and d,",-& i:: tile hardware sulp- i ug captacity, number of interfaces).

Appendix F CRLCMP Outline

SECT SUBJECT SECT SUBJECT

1. Introduction 7. Documentation
a. Overview a. Types of Documents
b. Scope and Applicability b. Data Rights
c. References c. Data Management

2. Systems Concept 8. Acquisition Management Practices
a. Operational Concept a. Software Development Strategy
b. Support Concepts b. Boards and Committees

c. Configuration Management
3. System Description d. Documentation Review or Approval
a. Overview e. Reviews and Audits
b. Computer Hardware f. Test and Evaluation
c. Computer Software g. Software Quality

h. Security
4. Computer Resources Design
a. System Architecture 9. Transition Management Practices

and Integration a. Configuration Management
b. Product Improvements b. Turnover
c. Software Development Tools c. Support During Transition
d. Reusability d. Transfer
e. Interoperability
f. Additional Design Constraints 10. Deployment Management Practices

a. Boards and Committees

5. Organizational Roles b. Configuration Management
a. Implementing Command c. Security
b. Supporting Command d. Training

c. Operating Command
d. Using Command (If Applicable) 11. Schedules

a. Major Milestones

e. Participating Commands b. Contract Delivery Schedule

f. Other Agencies c. Support Capabilities

6. Resources Appendices
a. Personnel A Acronyms and Abbreviations
b. Facilities B Glossary of Terms
c. Training C List of Key Personnel
d. Hardware D CRWG Charter
e. Software E Risk Management Plan
f. Integrated Logistics Support F Detailed System Description

G Security Assistance

Table F-I CRLCMP Outline

(c) Software Development Tools - Identifies (d) Reusability - Identifies and briefly
and describes the software development tools describes any developed or soon to be
and their usage environment. Indicates developed software, tools, environments, or
whether they are GFE, GFP, commercially facilities that may apply to other current or
available or contractor developed, future weapon systems.

F-2

Appendix F CRLCMP Outline

(e) Interoperability - Briefly describes any ticipating organizations for test and evalua-
interoperability requirements for the system tion of computer resources.
that are implemented in computer resources.

F.9 TRANSITION MANAGEMENT PRAC-
(f) Additional Design Constraints - Briefly TICES
describes additional performance and sup-
port constraints and considerations which This section discusses the procedures and
must be translated into specified require- directives which will govern configuration
ments. management and support during and after the

system is transferred from the developing or-
F.5 ORGANIZATION ROLES ganization to the using and supporting or-

ganizations.
This section describes the functional relation-
ships among the implementing command, the F.10 DEPLOYMENT MANAGEMENT
supporting command, the operating comn- PRACTICES
mand, and any other participating command
or government agency. This section identifies tile boards and com-

mittees which are created for the manage-
F.6 RESOURCES ment of computer resources during the

acquisition phase; identifies the existing
This section identifies the personnel, directives governing security for the system;
facilities, training, hardware, software, and in- and describes the activities and major mile-
tegrated logistics support requirements for stones associated with training personnel for
the system. operating and supporting tile system.

F.7 DOCUMENTATION F.11 SCHEDULES

This section summarizes the documentation This section identifies the major milestones
requirements, identifies the government's associated with the acquisition, transition,
software data rights, and describes the plans and support schedules of the system; iden-
and procedures for managing the data. tifies the schedules associated with contract

deliverables; and identifies the schedule for
F.8 ACQUISITION MANAGEMENT the initial operating capability for the primary
PRACTICES computer resource support capabilities.

This section discusses the software develop- F.12 APPENDICEIS
ment strategy; identifies configuration con-
trol boards and their interfaces to other The appendices will contain the complete
boards or committees; identifies the existing charter for the Computer Resour,•.s Working
directives which will govern configuration Group (CRWG) as well as the other items
management activities; identifies the indicated in the CRI.CMIP outline of Table
schedule and participating organizations for F-1. It is extremely important that the pro-
computer resource related reviews and gram manager carefully review the CRWG
audits; an(d describes the schedule and pair- charter prior to endorsing it. The CRWG

F-3

Appendix F CRLCMP Outline

must reflect the program manager's objec- forts later in the progran. In particular the
tives and philosophy. Failure of the program responsibilities of all the CRWG organiza-
manager to carefully review this charter can tions must be clearly spelled out to minimize
lead to misunderstandings and/or wasted ef- turf battles,

F-4

Appendix G Source Selection Plan

"APPENDIX G

SOURCE SELECTION PLAN

Table G-1 shows an outline of a Source Selec- number of personnel who will form the men-
tion Plan (SSP) as given in AFR 70-15, Source bership, including any advisors.
Selection Policy and Procedures. The other
services use a similar format. The following It is important that the key software person on
sections that should address mission critical the SSEB be very knowledgeable about
computer resources. software acquisition. Finding this individual
G.1 SOURCE SELECTION ORGANIZA- will not be easy since knowledgeable, senior
TION (Sect 2) software individuals are not always readily

available. If this individual is a member of the
This section describes the Source Selection program office, then his or her availability will
Authority (SSA), the Source Selection Ad- not be a problem. However, if no such in-
visory Counsel (SSAC), and the Source Selec- dividual can be found within the program of-
tion Evaluation Board (SSEB organizations fice, searching for that individual must
and lists recommended key members by become a matter of high priority.
name, or by position or functional area. It
must also specify other government organiza- If the program office is newly formed and
tions that will be represented on the SSAC without a knowledgeable software individual,
and SSEB, and include an estimate of the total the program manager must look to either

I Intrxluction other program offices, laboratories, or other
2 Source Selection Organization external organizations for an individual who
3 Screening Criteria can spend one to three months (a typical dura-
4 Evaluation Process tion period for a source selection) away from
5 Evaluation Criteria his or her current job. The longer the source
6 Acquisition Strategy selection, the more difficult it will be to find
7 Schedule of Events this individual. Ideally tie senior software

Table G-1 SSP Outline person in the source selection should be the

G-1

Appendix G Source Selection Plan

same individual who will be managing the approach that best satisfies the stated require-
effort once a developer is selected. Since the ments. Unless there are valid reasons for
selection of the right software deveioper is forcing the contractor to pursue a particular
paramount to the success of the entire pro- path, such as compatibility with an existing
gram, finding a knowledgeable softwarc system, the evaluation criteria should reflect
evaluator should be the number one priority the general requirements and not a particular
of the program manager. design.

G.2 SCREENING CRITERIA (Sect 3) G.4 ACQUISITION STRATEGY (Sect 6)

This section describes the criteria to be used This section will include a summary of the
to select prospective sources. The screening acquisition strategy, including type of con-
criteria must be developed prior to the official tract(s) proposed, the incentives con-
publication of the planned procurement ef- templated, milestones demonstrations
fort in the Commerce Business Daily (CBD). intended, and special contract clauses to be
It will be used by procurement personnel to used.
determine potential sources based on the let-
tei-s of interest received in response to the A strategy that may b_ used is to make the
CBD announcement. Contractors who have prime contractor responsible for developing
expressed interest and satisfy the screening all of the system .oftware or subcontracting it
criteria will receive copies of the proposal out. Another approach may be to direct the
package. Even if a contractor has failed to prirne contractor to subcontract critical por-
satisfied the screening criteria, it may still tions of the software to specialized software
receive a copy of the proposal if it requests it. houses. For example, a defensive avionics
Ordinarily, however, not too many contrac- subsystem may be subcontracted out to a sub-
tors wish to pdirsuIe a procurement in which contractor specializing in electronic warfare
the government doesn't feel it is competitive, systems.

The screening criteria must include the re- With the increasing role played by digital
(jLtirCenlet that the sources solicited will have electronics subsystems, an important segment
(inherently or by subcontracting or teaming of software is the development of Test Pro-
arrange inents) the management, financial, gram Sets (TPS) for automatic test equipment
technical expertise, and security clearances to (ATE). Since TPS develooment is a highly
design and develop the system software. specialized business, a primne contractor nor-

mally does not have the expertise to develop
G.3 EVALUATION CRITERIA (Sect 5) them, Even if he did, it is not prudent to put

so many software eggs in one basket. It may
This section describes the specific evaluation be highly advisable to contract separately for
criteria which will be used to judge all of the TPS development. This will mean a separate
l)roposals. In generating the evaluation source selection effort.
criteria, the program office must ensure that
criteria is not overly restrictive or biased Other specialized software areas are trainers
tomvards a particular approach or technology, and simulators. Once again it may be prudent
Remember that the developer should have to contract these efforts sepa.ately. For a
the hatitude to select both the technology and major s;imulator such as a weapon systems

G-2

Appendix 0 Source SIoctlon Plan

trainer, the program office may delegate this contractors include in their proposals the cost
responsibility to another organization or pro- of coordinating with other contractors.
gram office.

Finally this section should state whether the
Whatever strategy is selected, the most likely program office will use an Independent
approach will involve more than one contrac- Verification and Validation (IV&V) or-
tor. It is important that the proposal clearly ganization and their level of invo!vement with
state the government's preference so that the the software developers.

G-3

Appendix H SoftLiare Data Item Descriptions (DIDs)

APPENDIX H

SOHIWARE DATA ITEM DESCRIPTIONS (DIDs)

SPECIFICATION DIDs

DI-CMAN-80008A System/Segment Specification (SSS)
DI.CMAN-80534 System Segment Design Document (SSDD)
DI-MCCR-80025A Software Requirernents Specification (SRS)
DI-MCCR-80026A Interface Requirements Specification (JRS)
DI-MCCR-801929A SotAvre Product Specification (SPS)

DOCUMENTATION DILs

DI-MCCR-80030A Software Development Plan (SDP)
DI-MCCR-80012,A• Software Design Document (SDD)
DI-MCCR-80013A Version Description Document (VDD)
DI-MCCR-80014A Software Test Plan (STP)
DI-MCCR-80015A Software Test Description (STD)
DI-MCCR-80017A Software Test Report (STR)
DI-MCCR-80018A Computer System's Operator's Manual (CSOM)
DI-MCCR-80019A Software User's Manual (SUM)
-)I-MCCR-80021A Software Programmer's Manual (SPM)

DI-MCCR-8O022A Firmware Support Manual (FSM)
DI-MCCR-80024A Computer Resources Support Document (CRISD)
DI-MCCR-80027A Interface Design Document (ICD)

H-1

Appendix I Applicable Software References

APPENDIX I

APPLICABLE SOFTWARE MANAGEMENT REFERENCES

FAR Part 27 Federal Acquisition Regulation
FIRMR Part 201.7 Federal Information Resource Management Regulation
DFAR Part 270 Defense Federal Acquisition Regulation
DOD DIR 3405.1 Computer Programming Language Policy
DOD DIR 3405.2 Use of Ada in Weapon Systems
DOD DIR 5000.1 Major System Acquisition
DOD DIR 5000.2 Defense Acquisition Program Procedures
DOD DIR 5000.29 Management of Computer Resources in Major Defense Systems
DOD DIR 5000.40 Responsibility for the Administration for the DOD ADP Program
DOD DIR 5200.28 Security Requirements for Automated Information Systems
DOD FAR
Sup 52-227 Rights in Technic-al Data and Computer Software
DOD FAR Sup 70 kcquisition of Computer Resources
DOD-STD-2167A L'efense System Software Development
DOD-STD-2168 Defense System software Quality Program
DOD-STD-5200.28 Department of Defense Trusted Computer System Evaluation Criteria
DOD IIDBK-287 Defense System Software Development Handbook
DOD 5000.3-M-3 Software Test and Evaluation Master Plan Outline
MIL-STD-1521B Technical Reviews and Audits for Systems, Eqtuipments,

and Computer Software
MIL-STD-1815A Ada Programming Laliguage

I-1I

Appendix I Applicable Software References

OMB Cir A-130 Management of Federal Information Resources
Pub Law 89-306 Brooks Bill, Warner-Nunn Amendment and Implementing Directives
IEEE P982/D2.4 "DRAFT' Standard for Measures to Produce Reliable Software
IEEE P982/D5 "DRAFT' Guide for Use of Standard Measures to Produce

Reliable Software
AFR 800-14 Life Cycle Management of Computer Resources in Systems
AFSCP 80043 Software Management Indicators
AFSCP 800-14 Software Quality Indicators
AFSCP 80045 "DRAFT' Software Risk Abatement
FSCP/AFLCP 800-5 "DRAFT' Software Independent Verification and Validation (IV&V)
ASDP 800-5 Software Development Capability/Capacity Review
ESD-TR-88-001 Software Management Metrics

1-2

Index

INDEX

Note: In most cases the acronym is used in this Bit 3-8
index. See Appendix A for a list of acronyms. Boolean Logic 3-7

Bottom-up Design 13-6
Ada 3-13, 4-4, 4-5, 6-3, 9-3 Brooks Bill 4-1, 4-9

Environment 3-16 Buss 3-9
Language Features 3-15
Policy 4-4 CAD/CAM 13-2
Waiver 4-4 Capability and Capa,;ity Review 8-12

Abstraction 3-15 Capability Eval Team 8-15
AFR 800-14 7-7 CCB 10-7
AFSC/AFLCP 800-5 11-3, 11-4 CDR 2-9, 5-3, 6-2, 6-7, 6-15, 10-6
AIS 4-9 CDRL 8-9, 10-3
AIS Policy 4-9 CE 5-2, 6-1, 7-7, 8-1, 8-4
ANSI 4-6 CET 8-15
Architecture 9-4 Changeability 9-4
ASCII 3-8 CI Selection 10-2
ASD Pamphlet 800.5 8-13 CIDS 8-3
Assembler 3-10 CLINs 8-8
Assembly Language 3-10 CMP 5-5, 8-7, 10-3
Assessing Performance 13-10 CMS-2 4-4, 4-5
ATE 6-2 COBOL 3-11, 4-4, 4-5
ATLAS 4-4 COCOMO 12-7, 13-7
Audits 9-7 Coding 5-9
Avionics 3-3 Compiler 3-12

Computer
Baseline Architecture 3-7

Allocated 10-6 Definition 3-1
Developmental 10-7 Embedded 3-3, 3-5
Functional 10-6 Flight Control 2-5
Management 10-6 Hardware 3-3
Product 10-7 Instrumentation 2-5

BASIC 4-5 Mission Support 2 6
Binary 3-8,3-10 Navigation 2-5

J-1

Index

Computer (Continued) Design (Continued)
Resources 3-4 Metrics 12-.10
ISA 3-8, 3-9 Preliminary 5-7

Configuration Development Model 13-4
Audit 10-11 DIDs 8-7, Appendix H
Control 10-3 Documentation 2-9, 3-6, 3-7, 5-8, 5-9, 7-10, 9-2, 9-8
Control Process 10-9 DOD Directive
Functional 10-2 3405.1 4-4, 4-5
Physical 10-2 3405.2 3-17, 4-4
Status Accounting 10-10 5000.29 4-2, 4-7

Configuration Control Board 10-3 5000.3-M-3 6-2
Configuration Management 3-6, 6-13, 7-10, 10-1 DOD Instruction
Configuration Review Board 10-4 5000.31 4-4
Contracts 8-6 7920 4-9

Air Force 8-6 DOD-STD
Evaluating Proposals 8-12 2167A 4-4, 5-1, 5-5, 5-8, 5-11, 8-7, 9-4, 11-6
Evaluation 8-11 2168 4-4,5-14
Fees 9-4 480A 10-1
Incentives 9-4 5200.28 8-6
Instruction to Offerors 8-7 DT&E 6-2, 6-4, 6-10, 11-3
Proposal Evaluation 8-8 D/V 5-2, 8-1, 10-2

Control Systems 9-5
Copyright 4-8 ECP 10-4, 12-10
Cost EEPROM 3-6

Estimating 8-7, 1.1-6 Emulation 6-4
Hardware 2-3, 2-4 Engineering Change Proposals 10-4, 12-5
IV&V 11-1, 11-7 EPROM 3-6
Life Cycle 9-4 Evolutionary Development 9-4, 9-10
Post Deployment 2-3, 7-12, 7-7 Exception Handling 3-15
Problems 9-6
Software 2-3, 7-2, 7-3, 13-3 FAR 3-5, 4-9
Software Fixes 6-5 FCA 5-4, 10-11
Status 12-7 Feasibility Studies 8-4

COTS 8-9 Firmware 3-5, 8-7
CPU 3-2 FORTRAN 3-11, 4-4, 4-5
CRISD 5-11 FOT 11-2
CRLCMP 5-5, 7-7, 7-8, 8-3, 8-4, 8-6, 8-7 FQR 5-3, 5-12
CRWG 8-4, 10-5 FSD 5-2, 8-1, 8-7, 10-5
CSC 5-5, 6-3, 10-3 FSM 5-11

Integration 12-8 Functional Analysis 5-2
CSCI 5-5, 5-10, 6-4, 10-2, 10-3, 11-2
CSOM 5-11 Generics 3-16
CSU 5-3, 5-5, 10-3 GFE 9-6

GFI 9-6
Data Analysis Tools 6-14 Gist 9-9
Data Reduction Tools 6-14
Data Rights 4-8, 4-9 HOL 3-11, 4-3, 8-4
Defense Science Board 4-7 Human Factors 3-14
Demming Philosophy 9-5
Design I/) 3-2

Detailed 5-8 IC 3-6, 4-6

J-2

Index

ICWG 10-5 PDSS Guidance 7-11IDD 5-7 Planning 8-1
ILSP 7-8, 8-2, Appendix E Manning 13-6, 13-7
Incremental Development 9-6, 9-10 Margins 9-6
Information Hiding 3-15 MCCR 4-1, 4-2
Inspections 9-7 Management Steering Committe 4-2
Instruction Set Ar, hitecture 3-8, 3-9, 4-7 Policy 4-3
Integrated Circuits 2-2, 3-2, 4-6 Memory 3-3, 8-12, 9-6
Integration 9-8 Metrics 8-7, 9-6, 12-1

CSC 12-4 Adjustments and Refinements 12-6
Interface Application 12-2

Controls 9-3, 10-5 Choice 12-5
Definition 8-3 Contract Monitoring 12-6

Interfaces 8-12 Cost 12-7
IRS 5-4, 6-2, 8-3, 8-4, 10-6 Delivery Status 12-13
ISA 3-8, 3-9, 4-7 Development 12-10
ISO 4-6 Government Model 12-3IV&V 6-7, 6-15, 8-5, 8-8, 11-1 Management 12-1

Levels 11-5 Manpower 12-8
Need 11-3 Negotiation 12-5
Scope 11-4 Pre-Solicitation 12-3
Selecting Agent 11-7 Process 12-2
Tasks 11-5 Process Maturity 12-5

Program Manager's 12-6JOVIAL 4-4, 4-5 Resource Needs 12-3
Resources 12-9Language 3-9, 8-8 RFP/SOW 12-4

See also: Size 12-7
Ada Types 12-1
Atlas Quality 12-2
Basic Use of Models/Norms 12-6
C Microprocessor 2-2
CMS-2 MIL-STD
COBOL 1521b 5-3, 9-7
FORTRAN 1750A 3-9, 4-3, 4-7
JOVIAL 1815A 4-6, 11-7
PASCAL 483A 10-1, 10-2
SPC/1 882 11-4
TACPOL MITRE 8-14

License Agreements 4-9 Models 6-1
Localization 3-15 Modularity 3-15, 9-4

Machine Language 3-10 NCSC 8-6
Management Noise 6-12

Baseline 10-6
Checklist 9-11 Object Oriented Design 6-2, 9-3
Guidance 13-9 Object Oriented Programming 9-3
Guidelines 9-3, 9-5 OFP 8-8
IV&V 11-1 OOD 2-7, 5-7, 9-3
Metrics 12-1 Operating Systems 8-12
Monitor 8-4 Operational Concept Analysis 5-4

J-3

Index

OPNAVINST 5200.28 7-7 Requirements (Continued)
Orange Book 8-6 Analysis/Design 5-3
OT&E 6-2, 6-4, 6-13, 11-3 Definition 8-3, 9-4, 9-8
Packages 3-15 Refinement 5-4
PASCAL 4-5 Specification 12-10
Patches 6-16 Testability 9-7
Patent 4-9 Traceability 5-1, 9-2, 9-7
PCA 5-3, 5-11, 10-11, 12-12 Resource Planning 9-3
POL 3-17, 6-2, 12-11, 13-8 Resources Leverage 9-3
PDR 2-9, 5-3, 5-6, 6-2, 6-7, 6-15, 10-6, 12-10, 13-7 Restricted Rights 4-9, 8-9
PDSS 4-7, 7-15, 8-4 Reuse 8-7, 13-3

Air Force 7-8 Reviews 5-2, 9-3, 9-6, 9-7
Army 7-8 RFP 8-7, 10-3, 12-4
Concept 8-4 Draft 8-9
Corrections 7-11 Risk 5-4, 8-4, 8-7, 9-6, 9-7
Distribution of Corrections 7-11 ROM 3-6
Documentation 7-10,7-11 RSL/EVS 9-8
Enhancements 7-10
Evaluation of Complaints 7-10 SADT 9-9
Funding 7-9, 7-3 SCE 8-14, 12-5, 12-6
Integration Testing 7-10 Schedule 9-8
Interoperability Testing 7-10 Problems 9-6
IV&V 7-9 Schedules 9-3, 13-8
JLC Workshop 7-2 Scheduling 6-3
Location 7-8 SCM 10-1
Management Concerns 7-4 Audit 10-11
Management Guidance 7-11 Class 1 10-4, 10-5
Management perceptions 7-3 Class 1I 10-4, 10-5
Marine Corps 7-8 Control 10-1
Navy 7-8 Identification 10-1
Organization Chain 7-8 Library 10-10
Policy 7-9 Status Accounting 10-1
Process 7-7 SCRB 10-7
Software Environment 7-9 SDCCR 8-12
Strategy 7-8 Factors 8-13
SW Engineering Change 7-10 Team 8-13
What is 7-5 SDD 5-7

Peopleware 3-6 SDF 5-8
PIDS 8-3 SDP 6-2, 8-6, 8-7, 10-3
PMP 8-1 SDR 5-2, 8-3, 10-2, 10-6
Problem Reporting 10-8 Security 8-6
Product Baseline 5-11 Accreditation 8-6
PROM 3-6 Certification 8-6
Productivity 3-10, 3-13 SEI 8-14, 9-5, 4-7
Prototype 5-6, 8-8, 9-6, 9-8, 13-5 SETA 12-4
PSL/PSA 9-8 SIF 6-9

SIL 6-4, 6-12

Real-time 2-8, 3-2, 9-4 Simulation 6-11
Requirements Simulators 6-1

Analysis 5-6 Environment 6-1l
Analysis'rools 6-14 System 6-11

J-4

Index

Sizing 8-7 Support (Continued)
SLOC 12-7, 12-8 Resources 6-1
Software Studies 8-4

Acquisition Cycle 13-4 Vendor 8-12
Productivity 13-1 Facilities 3-7

Software Capability Evaluation 8-14 System/Segment Designs 5-3
Software Development 5-1, 5-4
Software Development Folder 10-11 TACPOL 4-4
Software Development Library 10-10 Tailoring 5-1.2
Software Engineering 2-1, 2-7, 3-13, 3-15, 4-6, 5-1, 9-2 Tasking 3-16
Software Engineering Institute 4-7 Teaming 8-7
Software Errors 6-5 TEMP 5-3, 6-1, 8-2, 8-5
SON 11-3 Test 5-9
Source Program 5-9 Against Requirements 9-7
Source Selection 8-9 Black Box 6-8

Source Selection Org anization 8-10 Bottom-Up 6-10
Special Requirements 8-9 Debugging 6-14
SSA 8-6 Desk Checking 6-7
SSAC 8-7 Facilities 6-12
SSP 8-6 Formal 5-10

SOW 5-13, 8-2, 8-8 Hot Bench 6-4, 6-12
Special Interest Items 9-6 Human 6-6
Specifications Informal 5-10, 6-3

C-5 5-11 Inspections 6-6,9-2
System 5-3 Integration 5-10, 5-12, 6-4, 6-12
Type A 5-4 PDSS 7-10

SPL/1 4-5 Peer Ratings 6-7
SPM 5-11 Planning 6-1
SPR 12-12 Resources 6-1, 6-12
SPS 5-11 Software Only 6-8
SQPP Appendix H Software System 6-8
SRR 5-2, 10-6 Support 6-1
SRS 5-5, 6-2, 8-3, 8-7, 10-6, 11-3, 11-4, 12-11 Tools 6-13
SSA 8-6 Top-Down 6-10
SSAC 8-11 Types 6-6
SSDD 8-3 Walk-Throughs 6-7, 9-2
SSEB 8-1l White Box 6-9
SSR 5-3, 5-5, 12-10 Testing
SSS 5-4, 8-3, 8-4, 11-4 Formal 11-3
Standards 2-7, 2-9, 3-9, 4-3, 4-8, 5-1, 5-2, 5-3, 5-5, Informal 11-3

6-2, 6-4, 6-12, 8-8, 8-14 Text Editors 6-14
STARS 4-7, 13-2 Throughput 3-9, 8-12, 9-6
Statement of Need 11-3 Tools 8-5
Static Analysis Tools 6-11 Debugging 6-14
STP 5-7, 6-2, 6-13 Devchopnicnt 8-12, 9-2, 9-6
STR 5-11 Specification Development 9-8
Structured Design 9-2 Top-Down Design 13-5
Subcontracts 8-7 TPS 8-8
SUM 5-11 Trade Secret 4-8
Support Tradeoff & Optimization 8-4

Organic 8-12 Tradeoff and Optimization 5-4

J-5

SE.CURITY C-L-ASSIFICATION O-TF THI4S PACSý

For,- App"oved
REPORT DOCUMENTATION PAGE 0M8 N<' 0704.01`88

la REPORT SECURITY CL.ASSIFICATION1 lb RESIR!CTIVE MARKINCS xOaeYn3,16

Unclassified____________________
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION 'AVAILABILITY OF REPOR.

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMPBER(S) 5 MOMiTORING ORGANIZATIO.N REPORT NUMBEQ(5)

6a NAME OF PERFORMING ORGANIZATION 6 fb. OFFICE SYMBOL 7a NAMES OF MOINITORING ORGANIZATION
Defense Sys tems Manag(men ,,I, (if appliclble)
College I E-

_._____________(City,_________adZIPCode

6c. ADDRESS (City, State, and ZIP Code) bARESCttteanZICoe

DS14C-SE- 11
Fort, Belvoir, VA 22o6o-5~426

8a. NAME OF FUNDING/ SPONSORING Bb OFFICE SYMBOL 9. PROCIJRCMENT INSTRLUMENJT IDENTIFICATION NUMBER
ORGANIZATION Defen1rsC S)ystemns (if apolicablej

Manag~ement CollegeI
8c. ADDRESS ,City, State, and ZIP Code) 10. SOLURCE OF FUNDING NUIVISERS

PROGRAM [ROJECT TASK WORK UNIT
]DSMC-SE-T PL,.MENT NO10 NO NO ACCE.SSION NO
Fort Belvoir, VA '22060-51126

11. TITLE (Include Security Classification)

.i.ssiori Critical. ComIrpute-r Resources Managemient, Guilue (u)

12, PERSONAL AUTHOR(S)

1._Caro,_R. Higucra, F. Kiackler. S. jaeebc,hism A. Roberts
13a TYPE OF REPORT 1bTIME COVERED 14DATE 0F REPORT (Yo~ar, Month, Daiy) 115 PAGjE COUNT

I ROM---- TO j200
16. SUPPLEMENTARY NOTATION

17, COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identity by block numbei)
FIELD GROUP SUIB-GROUP Computers

Sof tware solt V/wii'O SL~ppor~t.
weapon Systoms)/i S/W Pvt.1c0;.ujI(net Cv(__c

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This documIent :iS One of a fa3mily of educationanl guides3 written -r~om a Departmenl, o~f Dýf'ense(
(DOD) Pers,.pective-_ (i.e., non-service peculiar). Th'iesc books are ilitoelde-d primariy f'or
use ii t11e colurses at the Defense Systems Mlanagremrent Coilog~ae (DSMC) -,nd scecondarily,/ as
desk referenice for progyrami and project management; pe)(rsonnel. The books nre wri ttcji f'or
current and potenltial DOD Acquisition Manager's who haesome falmliliarity With the b~;~
terms and definitions of the acquisi Lion proce2ss. it1'.5L intenided *to a-ssist, both the
Govcrninent and industry personnel in CXecutitng, their lnanai:~n respons bijll lies rul~at i~ve
to the acquisition and support of defense systems. This farint]y of Liei'lguiebo
includes: "integlrated Logistics Su~pport Guide." First Editoio, Mýay 198)'6; "SystIMens j

Engineering, Manageme-et Guide,"' Second Editiort, December 1986; "Deatt ul ofns
Mlanufacturing Mlanagemrent 1Hancibook for Program Mantragers," ISecond E~d~i Lion, July]19t3)4
"Test and Evalu~ation Management Guide,'' Marchi 11088; ''Acqllisiý.J-i on treyGidI'L't
Edition, Ju~ly 19814 ; "'Subeon trac t. ing Managermunt flandbook, "t Firs; . Ed~it(ion, 1988); "P. Programn
Office Guide to TCl1ecncioPgy.- TransferC . ?ove-.or J___________

20 DISTRIBUTION /AVAILABILITY OCI ABSTRACT 21 ABSTR4CT SECURITY CLASSIFICATION
UVNCLASSIFIED/UNLIMITED R1 SAME AS RPT El DTIC USERS Unclassi fJ eýd_________

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (/nclude Area Code) I22c OFFICE SYMBOL
isrnel I., Caro 664-i-Lwq SE-

DD FORM 1473, 84 MAR 83 APR edition ma3y be used until exh, usted SECLIRITY (LASSIFiCATION OF THIS PAGEF
All other editions are obsolete ---.-----. -..

